首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 265 毫秒
1.
Cooperative hybrid‐automatic repeat request (HARQ) protocols, which can exploit the spatial and temporal diversities, have been widely studied. The efficiency of cooperative HARQ protocols is higher than that of cooperative protocols because retransmissions are only performed when necessary. We classify cooperative HARQ protocols as three decode‐and‐forward‐based HARQ (DF‐HARQ) protocols and two amplified‐and‐forward‐based HARQ (AF‐HARQ) protocols. To compare these protocols and obtain the optimum parameters, two unified frameworks are developed for protocol analysis. Using the frameworks, we can evaluate and compare the maximum throughput and outage probabilities according to the SNR, the relay location, and the delay constraint. From the analysis we can see that the maximum achievable throughput of the DF‐HARQ protocols can be much greater than that of the AF‐HARQ protocols due to the incremental redundancy transmission at the relay.  相似文献   

2.
In multiuser cooperative relay networks, cooperative diversity can be obtained with the help of relays, while multiuser diversity is an inherent diversity in multiuser systems. In this letter, the performance analysis of multiuser diversity in cooperative multi-relay networks is presented. Both the case of all relay participating and the case of relay selection are considered. We first derive asymptotic expressions of outage probability and symbol error probability for amplify-and-forward (AF) and decode-and-forward (DF) protocols with joint multiuser and cooperative diversity. Then, the theoretical analysis are validated by Monte Carlo simulations. Both the theoretical analysis and simulations show that a multiuser diversity order of K and a cooperative diversity order of M+ 1 can be achieved simultaneously for both AF and DF protocols (where K is the number of accessing users and M is the number of available relays). These demonstrate that the multiuser diversity can be readily combined with the cooperative diversity in multiuser cooperative relay networks.  相似文献   

3.
Fading relay channels: performance limits and space-time signal design   总被引:26,自引:0,他引:26  
Cooperative diversity is a transmission technique, where multiple terminals pool their resources to form a virtual antenna array that realizes spatial diversity gain in a distributed fashion. In this paper, we examine the basic building block of cooperative diversity systems, a simple fading relay channel where the source, destination, and relay terminals are each equipped with single antenna transceivers. We consider three different time-division multiple-access-based cooperative protocols that vary the degree of broadcasting and receive collision. The relay terminal operates in either the amplify-and-forward (AF) or decode-and-forward (DF) modes. For each protocol, we study the ergodic and outage capacity behavior (assuming Gaussian code books) under the AF and DF modes of relaying. We analyze the spatial diversity performance of the various protocols and find that full spatial diversity (second-order in this case) is achieved by certain protocols provided that appropriate power control is employed. Our analysis unifies previous results reported in the literature and establishes the superiority (both from a capacity, as well as a diversity point-of-view) of a new protocol proposed in this paper. The second part of the paper is devoted to (distributed) space-time code design for fading relay channels operating in the AF mode. We show that the corresponding code design criteria consist of the traditional rank and determinant criteria for the case of colocated antennas, as well as appropriate power control rules. Consequently space-time codes designed for the case of colocated multiantenna channels can be used to realize cooperative diversity provided that appropriate power control is employed.  相似文献   

4.
The performance of multi-antenna multi- relay cooperative system is investigated in this paper. Two relaying strategies, i.e., reactive and proactive strategies are analyzed with the Amplifyand- Forward (AF) and Decode-and-Forward (DF) protocols. We derive the Cumulative Distribution Function (CDF) of the received Signal-to-Noise Ratio (SNR) at the destination, which is used to calculate the exact outage probability, for both AF and DF protocols. According to these results, we conclude that a cooperative network which composes K relays each equipped with nr antennas can achieve maximal order-(2nrK+1) diversity gain, by proper processing at relays and destination. Furthermore, the performance comparison is given, in terms of outage probability. These two strategies outperform each other in different scenarios in AF protocol, whilst proactive strategy is always better than its counterpart in DF protocol. According to these results, the optimal power allocation schemes among relay nodes are also presented, with reasonable power constraint.  相似文献   

5.
针对AF(amplify-and-forward)和DF(decode-and-forward)2种转发模式,分析了分组协同中继通信系统在高信噪比下的误帧率性能,并研究了帧长对误帧率的影响。研究表明,以误帧率为准则,AF和DF模式都取得了相同的分集增益,但是编码增益不一样,并且编码增益与帧长有关。与现有的研究结论不一样,考虑到实际的分组长度,DF总是能够获得较AF更好的性能,帧越短DF的优势越明显;当帧长足够大时AF能够获得和DF相近的性能。还研究了最优的中继位置,对于AF系统,最优的中继位置总是位于源和目的节点中点处;而对于DF系统,当帧长增大时最优的中继位置将从靠近源处逐渐移至中点处。  相似文献   

6.
Recently developed cooperative protocol with distributed path selection provides a simple and practical means of achieving full cooperative diversity in wireless networks. While the best path selection method can significantly improve bit error rate (BER) performance, it may cause unequal power consumption among relay nodes, which may reduce the lifetime of energy-constrained networks. A path selection method under the equal power constraint has been developed for the amplifyand- forward (AF) protocol, but there is no such method for the decode-and-forward (DF) protocol. In this paper, we develop a distributed path selection method with an equal power constraint for the DF protocol. We also analyze the BER performance of our path-selection method. Numerical results demonstrate that the proposed method can guarantee equal power consumption, while achieving full diversity as the best path selection method and providing significant performance gain relative to noncooperative communication.  相似文献   

7.
In this paper, we evaluate the delay experienced by Poisson arriving packets for cooperative truncated hybrid automatic repeat request (HARQ) with opportunistic relaying. We derive the theoretical expressions of the expected waiting time and the packet's sojourn time in the queue of truncated opportunistic cooperative ARQ, HARQ I with and without packet combining (PC), and HARQ II with code combining (CC). The analysis is valid for block Nakagami- $m$ fading channels and any number of relays for both amplify-and-forward (AF) and decode-and-forward (DF) relaying. In opportunistic AF cooperative HARQ, packet retransmission is done by the relay offering the highest instantaneous signal-to-noise ratio (SNR) of the relaying link (source–relay–destination). In opportunistic DF cooperative HARQ, retransmission is done by the relay offering the highest instantaneous SNR of the relay–destination link among the relays that have correctly decoded the transmitted packet by the source. If no relay has correctly decoded, the retransmission is made by the source. Simulation results are also provided to verify the tightness of the derived expressions. The results indicate a significant improvement of packet delivery delays when compared with the absence of cooperation.   相似文献   

8.
We propose novel cooperative transmission protocols for delay-limited coherent fading channels consisting of N (half-duplex and single-antenna) partners and one cell site. In our work, we differentiate between the relay, cooperative broadcast (down-link), and cooperative multiple-access (CMA) (up-link) channels. The proposed protocols are evaluated using Zheng-Tse diversity-multiplexing tradeoff. For the relay channel, we investigate two classes of cooperation schemes; namely, amplify and forward (AF) protocols and decode and forward (DF) protocols. For the first class, we establish an upper bound on the achievable diversity-multiplexing tradeoff with a single relay. We then construct a new AF protocol that achieves this upper bound. The proposed algorithm is then extended to the general case with (N-1) relays where it is shown to outperform the space-time coded protocol of Laneman and Wornell without requiring decoding/encoding at the relays. For the class of DF protocols, we develop a dynamic decode and forward (DDF) protocol that achieves the optimal tradeoff for multiplexing gains 0/spl les/r/spl les/1/N. Furthermore, with a single relay, the DDF protocol is shown to dominate the class of AF protocols for all multiplexing gains. The superiority of the DDF protocol is shown to be more significant in the cooperative broadcast channel. The situation is reversed in the CMA channel where we propose a new AF protocol that achieves the optimal tradeoff for all multiplexing gains. A distinguishing feature of the proposed protocols in the three scenarios is that they do not rely on orthogonal subspaces, allowing for a more efficient use of resources. In fact, using our results one can argue that the suboptimality of previously proposed protocols stems from their use of orthogonal subspaces rather than the half-duplex constraint.  相似文献   

9.
This paper proposes a cooperative quadrature physical layer network coding (CQPNC) scheme for a dual‐hop cooperative relay network, which consists of two source nodes, one relay node and one destination node. All nodes in the network have one antenna, and the two source nodes transmit their signals modulated with quadrature carriers. In this paper, a cooperative quadrature physical layer network coded decode‐and‐forward (DF) relay protocol (CQPNC‐DF) is proposed to transmit the composite information from the two source nodes via the relay node to the destination node simultaneously to reduce the number of time slots required for a transmission. The proposed CQPNC‐DF relay protocol is compared with time‐division multiple‐access amplify‐and‐forward (TDMA‐AF), TDMA‐DF, cooperative network coded DF (CNC‐DF) and cooperative analog network coded AF (CANC‐AF) relay protocols to demonstrate its effectiveness in terms of bit error rate (BER) and system throughput under different propagation conditions. The simulation results reveal that the proposed CQPNC‐DF relay protocol can significantly improve the network performance. Compared with two TDMA schemes and CNC‐DF, the proposal can provide up to 100% and 50% throughput gains, respectively. Moreover, no matter what the scene, the proposed scheme always has the lowest BER in the low SNR region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Hybrid automatic repeat request (HARQ) is the well-known technique to improve the system throughput and link performance in wireless communication systems. It can also be applied together with the cooperative communication, which provides a new way of exploiting the spatial diversity. Firstly, we present the analytical framework of decode-and-forward (DF) relaying systems with the general hop-by-hop HARQ mechanism in this paper. Then, instead of capacity or outage performance which is only taken as the theoretical guide, the block error rate bound of cooperative DF relaying systems with HARQ transmission is analyzed by using weight enumerating functions. Numerical and simulation results demonstrate the effectiveness of the proposed analytical method and show the gain of HARQ transmission in DF relaying systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号