首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Root zone salinity is one of the major factors adversely affecting crop production. A saline shallow water table can contribute significantly to salinity increases in the root zone. A soil salinity model (LEACHC) was used to simulate the effects of various management alternatives and initial conditions on root zone salinity, given a consistently high water table. The impact of water table salinity levels, irrigation management strategies, soil types, and crop types on the accumulation of salts in the root zone and on crop yields was evaluated. There were clear differences in soil salinity accumulations depending upon the depth and salinity of the water table. In general, increasing water table depth reduced average soil profile salinity, as did having lower salinity in the water table. Among the four irrigation strategies that were compared, the 14-day irrigation interval with replenishment of 75% of evapotranspiration (ET) resulted in the lowest soil salinity. With a 4-day interval and 50% ET replenishment, a wheat yield reduction of nearly 40% was predicted after three years of salt accumulation. Soil type and crop type had minimal or no impact on soil salinity accumulation. Under all conditions, soil water average electrical conductivity increased during the 3-year simulation period. This trend continued when the simulation period was extended to 6 years. Under the conditions shown to develop the highest average soil salinity (high water table, low irrigation), an annual presowing irrigation of 125 mm caused a nearly 50% reduction in soil salinity at the end of the 6-year simulation period, as compared with the soil salinity given no presowing irrigation.  相似文献   

2.
Sudan grass is a moderately salt-tolerant annual that is capable of substantial osmotic adjustment under high soil salinity conditions, but little is documented about its actual water use and yield under saline conditions. We estimate water use and evaluate the effects of “reduced-runoff” irrigation on soil salinity associated with Sudan grass hay production during a three-year field study (1996–98) in the Imperial Valley, California. The reduced-runoff irrigation method relies on the application of a simplified volume-balance surface irrigation model, and can result in negligible surface runoff; however, its use may have adverse impacts on soil salinity. Despite an anticipated salinity-induced yield reduction of about 15% associated with an average soil salinity of 6 dS∕m (0–0.6 m depth), use of the reduced-runoff method resulted in satisfactory crop yields, practically no tailwater runoff, and a slight decrease from the initial average profile soil salinity. The average applied water depth and estimated consumptive use (ETc) during the project were 1,019 and 935 mm, respectively, resulting in an average hay yield of 14.4 Mg∕ha versus the 1996–98 county average of 12.6 Mg∕ha. The project average ETc/ET0 and yield∕ETc ratios of 0.73 and 15.5 kg∕ha?mm, respectively, were approximately 15% less than those estimated from water-use-efficiency studies, probably as a result of salinity-induced hay yield reduction.  相似文献   

3.
A one-dimensional water and solute transport UNSATCHEM model is calibrated and validated with a saline water use experiment for wheat and cotton crops. The model is further employed for regional scale salinity modeling with distributed data on soil, irrigation water supply, and its quality from six representative locations from the Kheri command of the Bhakra irrigation system. The wheat–cotton crop rotation, the main rotation in the command, is considered during long-term simulations. The CROPWAT model is used to determine the evapotranspiration requirements of different wheat and cotton crops, while soil water retention parameters are estimated by the RETC model. Atmospheric water and solute boundary conditions are assumed at the top boundary, while free drainage is considered for the lower boundary, as the watertable in the command is sufficiently deep. Simulated salinity and yield values are compared with observed values for regional validation of the model. Critical areas in the command are identified using regional scale modeling results, and applying irrigation water availability and root zone salinity criteria. Guidelines for sustainable conjunctive water use planning are for the Kheri command to get optimum agricultural production despite the use of saline water for irrigation under prevailing scenarios of water availability and its quality.  相似文献   

4.
Reduced-Runoff Irrigation of Alfalfa in Imperial Valley, California   总被引:1,自引:0,他引:1  
This paper assesses the potential of the “reduced-runoff” surface irrigation method for clay soils to limit tailwater runoff and evaluate its impacts on crop production and soil salinity throughout a 3-year alfalfa hay production cycle in the Imperial Valley. Despite moderately saline field conditions, tailwater runoff was reduced to <2%, thereby reducing the annual water application by approximately 28% with no loss in hay yield or quality in comparison to countywide averages. The valley average applied-water yield efficiency (yield∕applied water) was increased from 8.9 to 15.2 kg∕ha-mm. When corrected for yield reduction due to salinity conditions (i.e., ~21 kg∕ha-mm), this latter value is comparable to reported maximum alfalfa water-use efficiency (~20 kg∕ha-mm). Soil salinity accumulated (from 6 to 14 dS∕m) at the 0.9–1.5 m depth interval of the soil profile, particularly in the lower 15% of the border checks by the end of the study. However, disking, a single leaching irrigation, and sweet corn production after termination of the alfalfa were adequate to reclaim the soil.  相似文献   

5.
Extensive field data and calibrated flow and salt-transport models characterize the spatial and temporal patterns of salinity and waterlogging in an irrigated western river valley. Over three irrigation seasons, average seasonal aquifer recharge from irrigated fields in a 50,600?ha study area ranges from 0.59?to?0.99?m, including contribution from precipitation. The salinity of irrigation water varies from 618?to?1,090?mg/L. The water table is shallow, with 16 to 33% of irrigated land underlaid by an average water table less than 2?m deep. Average water table salinity ranges from 2,680?to?3,015?mg/L, and average soil salinity from 2,490?to?3,860?mg/L. Crop yield reductions from salinity and waterlogging range from 0 to 89% on fields, with regional averages ranging from 11 to 19%. Annual salt loading to the river from subsurface return flows, generated in large part by dissolution from irrigation recharge, averages about 533?kg/irrigated?ha?per?km. Upflux from shallow water tables under fallow ground contributes to about 65?million?m3 (52,600?acre-ft) per year of nonbeneficial consumption. Beyond problem identification, the developed database and models provide a basis for effectively addressing these problems through a systematic and comparative assessment of alternative solutions.  相似文献   

6.
This paper presents a model to estimate the soil salinity for different on-farm management strategies under irrigated conditions. It is based on research in the Mani?oba irrigation scheme in northeast Brazil, where upward flow from the shallow water table is the main cause of soil salinization. The model calculates soil water and salt balances for the topsoil. It is calibrated for the topsoil of abandoned plots and for the root zone (0.9?m) of mango trees. Simulating the effect of different management scenarios on soil salinity may help to organize the switch from intensive surface irrigation to more efficient irrigation practices.  相似文献   

7.
Saline high water tables pose a growing threat to the world’s productive irrigated land. Much of this land lies along arid alluvial plains, where solutions must now be developed in the context of changing constraints on river management. Findings are presented from the preliminary phase of a project aimed at developing, through well-conceived data collection and modeling, strategies to sustain irrigated agriculture in the salinity-threatened lower Arkansas River Basin of Colorado. Extensive field data from a representative subregion of the valley reveal the nature and variability of water table depth and salinity, irrigation efficiency and salt loading, and soil salinity. The shallow water table had an average salinity concentration of 3,100 mg/L and an average depth of 2.1 m, and was less than 1.5 m deep under about 25% of the area. Evidence reveals low irrigation efficiencies and high salt loading under each of six canals serving the subregion. Water table depths less than 2.5–3 m contributed to soil salinity levels that exceed threshold tolerances for crops under about 70% of the area. Preliminary steady-state modeling indicates that only limited improvement can be expected from vertical drainage derived from increased pumping, or from decreased recharge brought about by reduced overirrigation. Investments in canal lining, horizontal subsurface drainage, and improved river conditions also will need consideration.  相似文献   

8.
Soil salinity is a major environmental factor limiting the productivity of agricultural lands. To determine the effects of irrigation water salinity and leaching on soil salinity and consequently wheat yield, a field experiment was conducted on a silty clay soil, a typical soil of Rudasht region, Isfahan province, Iran, with three irrigation water salinity levels of 2, 8, and 12?dS/m with/without leaching levels of 4, 19, and 32% with two different irrigation water managements, using factorial design with four replications for each treatment. The results showed that as the irrigation water salinity and consequently soil salinity increases, the yield components such as grain yield, straw yield, 1,000-grain weight, crop height, spike length, and leaf area index decreases significantly. Leaching caused the yield components to increase significantly. An increase in seed protein percentage was noted as the salinity of irrigation water increased. The interaction effects of irrigation management and leaching on yield and yield components was significant. The results of best fit line to relative yield data versus soil ECe showed that the parameters of the above linear relation are site specific, and there is no significant difference between the parameters obtained in this study as compared to the other researchers’ results and the study validates the established relationships between wheat yield and salinity obtained by other researchers. The recycled drainage water could be used in combination with less saline river water as an alternative and less expensive irrigation water to grow salt-tolerant crops such as wheat, to produce profitable yield and to improve the agricultural economy of arid land regions.  相似文献   

9.
As water is becoming a scarcer commodity, savings in the irrigation sector could enhance water development in areas currently not being irrigated, and arrest the rapid environmental degradation due to waterlogging in arid areas. The agro-hydrological model SWAP is used to investigate possible water reductions for wheat and cotton crops under shallow water table conditions prevailing in the Fourth Drainage Project in Punjab, Pakistan. The simulations are performed for both drained and undrained conditions considering three different irrigation water qualities. The overall objective is to save good-quality irrigation water. The results indicate that when good-quality canal water is available, a reduced application to wheat (195 mm) and cotton (260 mm) will keep the soil healthier under both drained and undrained conditions. For poor-quality irrigation waters (mixed canal and tubewell or tubewell alone), this water conservation strategy will be insufficient. Therefore, more water (325 mm for wheat and 325 mm for cotton) should be applied to keep crop production and soil salinity within desirable limits. However, this will only be applicable to the areas where proper subsurface drainage systems are present. For undrained areas, this strategy will not be feasible due to rising water tables; other options like growing more salt-tolerant crops should be considered. Drainage cannot solve salinity buildup problems under all circumstances because relatively dry monsoons provide insufficient leaching water, and salts added by tubewell irrigation can only be evacuated from the soil profile if the drainage system is very intense. Reduced irrigation inputs is a proper short-term solution, although wheat production tends to decline in all areas without drainage, even when irrigated with canal water. Large-scale drainage investments associated with adjusted irrigation planning seem unavoidable in the long run.  相似文献   

10.
The effects of irrigation water salinity on growth, yield, and water consumption of okra was investigated with a pot experiment. For this purpose, five irrigation water salinity levels with electrical conductivities of 1.5, 2.5, 3.5, 5.0, and 7.0?dS/m and tap water as a control treatment were used in a randomized design with five replications. Irrigation practices were realized by considering the weight of each pot. Threshold soil salinity and slope values of the yield response to soil salinity level were determined to be 3.48?dS/m and 4.2%, respectively, for fruit yield, 4.24?dS/m and 7.0% for vegetative dry weight, and 6.0?dS/m and 7.9% for root dry weight. The results revealed that okra was moderately tolerant to salinity. Increasing soil salinity levels caused significant decreases in plant water consumption. Plant water consumption decreased by 2.43% per unit increase in soil salinity. Plant coefficient (Ky) was 1.26. Saline irrigation water treatments altered Cl, Mg, Ca, and Na accumulations in leaves, whereas only Na accumulation in fruits was observed.  相似文献   

11.
This paper presents results from an experiment to measure the salt transport processes within a border-irrigated bay in northern Victoria, Australia, an area with shallow saline ground water and cracking soils. The overland flow and drainage salinity measurements showed that lateral surface washoff of salt from the soil surface was the main process of salt transport into surface water. Soil salinity measurements showed that, although salt was removed from the near-surface soil, there was negligible leaching downward through the profile. This was due to the near saturation of the soil, the presence of cracks that minimize the vertical leaching, as well as the lack of deep drainage of ground water. These findings highlight the importance of lateral washoff in the transfer of salt from irrigation bays, suggesting that reduction in irrigation event volumes is likely to reduce salt export and thus affect the sustainability of irrigation in this area.  相似文献   

12.
Landscapes continuously irrigated without proper drainage for a long period of time frequently experience a rise in water-table levels. Waterlogging and salinization of irrigated areas are immediate impacts of this situation in arid areas, especially when groundwater salinity is high. Flooding and heavy rainfall further recharge groundwater and accelerate these impacts. An understanding of regional groundwater dynamics is required to implement land and water management strategies. The purpose of this study is to quantify the impact of flood and rain events on spatial scales using a geographic information system (GIS). This paper presents a case study of shallow water-table levels and salinity problems in the Wakool irrigation district located in the Murray irrigation area with groundwater average electrical conductivity greater than 25,000?μS/cm. This area has experienced several large flood events during the past several decades. Piezometric data are interpolated to generate a water-table surface for each event by applying the Kriging method of spatial interpolation using the linear variogram model. Spatial and temporal analysis of major flood events over the last four decades is conducted using calculated water-table surfaces to quantify the change in groundwater storage and shallow water-table levels. The drainage impact of a subsurface drainage scheme partially covering the area has also been quantified in this paper. The results show that flooding and local rainfall have a significant impact on shallow groundwater. The study also found that postflood climatic conditions (evaporation and rainfall) play a significant role in the groundwater dynamics of the area. The spatial net average groundwater recharge during the flooding events ranges from 0.19 to 0.52?ML/ha. The GIS-based techniques described in this paper can be used for net recharge estimation in semiarid regions where it is important to quantify net recharge impacts of regional flooding and local rainfall. The spatial visualization of the net recharge in a GIS environment can help prioritize management actions by local communities.  相似文献   

13.
Development of Comprehensive Soil Salinity Index   总被引:1,自引:0,他引:1  
Crop yield is a function of many agroclimatic factors. However, excessive wetness, dryness, or soluble salts in the root zone are three important stresses that inhibit crop growth and reduce yield. Stress due to wetness can be expressed by an index such as SEW30 (sum of excess water over 30 cm); however, a similar index is not available for stress due to soil salinity. An index, the sum of excess salinity over threshold (SEST), is proposed here. This index represents the cumulative salinity status of the root zone with respect to a specific crop in excess of the crop’s threshold level. Specifically, it incorporates the sum of daily salinity excesses over the threshold salinity level of the crop at different points in the root zone and over a specific crop-growth stage (or over an entire cropping period). The proposed salinity index, however, needs to be evaluated with field data before it can be used to characterize salt buildup in soil under different irrigation regimes.  相似文献   

14.
Unsaturated soil hydraulic parameters and functions used in numerical models to simulate water flow and solute transport in the unsaturated zone are generally considered invariant of soil water salinity levels. This study uses 5 years of field soil water salinity levels at three observation sites from the Land Retirement Demonstration Project (LRDP) (20069) located in western Fresno County, California, to test the hypothesis that field unsaturated soil hydraulic properties are also a function of soil water salinity level. The HYDRUS-1D software package for simulating one-dimensional (1D) movement of water, heat, and multiple solutes in variably saturated media, and Parameter Estimation (PEST), a model-independent parameter optimizer, is used to optimize the soil hydraulic parameters and downward bottom flux corresponding to three different average soil salinity levels at each site. The results show that at the same pressure head, soil water content is less with higher soil water salinity as compared with lower soil water salinity. It is thus concluded that the use of soil water salinity invariant soil water hydraulic parameters in numerical modeling can seriously compromise predictions, especially for a variable soil water salinity environment.  相似文献   

15.
The SIMGRO hydrologic simulation model was extended to include irrigation practice. It could then be used to evaluate the effect of hydrologic changes in an irrigated area in the province of Mendoza, Argentina where, given an average annual rainfall of approximately 200?mm, irrigation is crucial for agriculture. A storage dam was recently constructed in the Mendoza River to control the fluctuating river flow and to guarantee that the demand for water is met throughout the year. The dam will impact on parts of the irrigation system where groundwater levels are already high and salinization occurs. To evaluate these changes and possible mitigation measures, two performance indicators that consider groundwater and surface water were used: Relative evapotranspiration and the depleted fraction. Scenario runs revealed that the irrigation water losses from the canals affect the groundwater levels in the downstream part of the irrigated area; an increase in salinity was also revealed.  相似文献   

16.
Electromagnetic instruments are increasingly being used for in situ analysis and mapping of soil salinity in irrigated soils. This study develops calibration models for salinity assessment over regional scales on the order of tens of thousands of hectares. These models relate apparent soil electrical conductivity measured with the EM-38 electromagnetic induction meter (Geonics Ltd.) to traditional laboratory-measured saturated paste electrical conductivities (ECe). The study area is located in the Lower Arkansas River Valley, Colo. and is divided into two regions. At each of 414 randomly selected calibration sites, an EM-38 reading was taken and multiple soil samples were extracted for analysis. The sites chosen have soil ECe values ranging from 1?to?18?dS/m, gravimetric water contents (WC) from 0.02 to 0.4, and textures ranging from sands to clays. The best model for predicting soil ECe in both study regions is bivariate nonlinear and includes EM-38 vertical readings (EMV) and WC as covariates. Uncertainty in the calibration equations is addressed and tests are conducted at 48 independent sites. Results indicate that, while uncertainty is considerable in regional scale surveys, electromagnetic instruments can be calibrated for rapid reconnaissance of soil water salinity, providing reasonably accurate identification of salinization categories.  相似文献   

17.
To sustain productive irrigated agriculture with limited water resources requires a high water use efficiency. This can be achieved by the precise scheduling of deficit irrigation systems taking into account the crops’ response to water stress at different stages of plant growth. Particularly in the light of climate change with rising population numbers and increasing water scarcity, an optimal solution for this task is of paramount importance. We solve the corresponding complex multidimensional and nonlinear optimization problem, i.e., finding the ideal schedule for maximum crop yield with a given water volume by a well tailored approach which offers straightforward application facilities. A global optimization technique allows, together with physically based modeling, for the risk assessment in yield reduction considering different sources of uncertainty (e.g., climate, soil conditions, and management). A new stochastic framework for decision support is developed which aims at optimal climate change adaption strategies in irrigation. It consists of: (1) a weather generator for simulating regional impacts of climate change; (2) a tailor-made evolutionary optimization algorithm for optimal irrigation scheduling with limited water supply; and (3) mechanistic models for rigorously simulating water transport and crop growth. The result, namely, stochastic crop-water production functions, allows to assess the impact of climate variability on potential yield and thus provides a valuable tool for estimating minimum water demands for irrigation in water resources planning and management, assisting furthermore in generating maps of yield uncertainty for specific crops and specific agricultural areas. The tool is successfully applied at an experimental site in southern France. The impacts of predicted climate variability on maize are discussed.  相似文献   

18.
As a second crop, watermelons (Citrullus vulgaris, Crimson sweet) were grown in 2003 and 2004 in the Sanliurfa-Harran Plain in southeastern Turkey to determine the effect of preharvest water stress on fruit yield, quality (i.e., soluble solids contents and fruit size), leaf temperature, and some other physiological parameters. Preharvest drip irrigation treatments included (1) complete irrigation cutoff, dry (D); (2) full irrigation based on replenishment of soil water depleted from 0 to 90?cm soil profile (C); (3) 75% full irrigation (IR1); (4) 50% full irrigation (IR2); and (5) 25% full irrigation (IR3) with 3-day irrigation interval. Treatment plots received the same level of irrigation water until the fruit formation stage, except for Treatment D. Then, different water stress levels were imposed on treatment plots. Irrigation water applied to the five respective treatments were 636, 511, 395, 245, and 120?mm in 2003 and 648, 516, 403, 252, and 127?mm in 2004. Results indicated that fruit yield was significantly lowered by reduced water rates. The seasonal average yield response factor (ky) for both years was 1.0, but it was 0.97 for 2003 and 0.98 for 2004. The highest marketable fruit yield, obtained from treatment C, was 32.4?Mg?ha?1 in 2003 and 37.1?Mg?ha?1 in 2004. D, IR2, and IR3 treatments reduced most measured parameters, except for soluble solids contents (SSC). Both the fruit size and SSC were significantly affected by late-season irrigation management; individual fruit weights were significantly reduced, whereas SSC increased in the IR2 and IR3 treatments compared to the control values. The writers’ results clearly indicated that reduced preharvest irrigation was detrimental. Water use efficiency (WUE) was significantly affected by irrigation treatments. Even a 25% reduction in the irrigation amount caused a 15% reduction in marketable yield. This indicates that deficit irrigation in the ripening stage significantly increased water use efficiency. The study demonstrated that a moderate deficit irrigation, which is replenishment up to 50% of soil water depleted in the root zone, can be successfully used to improve WUE under semiarid climatic conditions.  相似文献   

19.
The Imperial Irrigation District is a large irrigation project in the western United States having a unique hydrogeologic structure such that only small amounts of deep percolation leave the project directly as subsurface flows. This structure is conducive to relatively accurate application of a surface water balance to the district, enabling the determination of crop evapotranspiration (ETc) as a residual of inflows and outflows. The ability to calculate ETc from discharge measurements provides the opportunity to assess the accuracy and consistency of an independently applied crop coefficient—reference evapotranspiration (Kc?ET0) procedure integrated over the project. The accuracy of the annual crop evapotranspiration via water balance estimates was ±6% at the 95% confidence level. Calculations using Kc and ET0 were based on the FAO-56 dual crop coefficient approach and included separate calculation of evaporation from precipitation and irrigation events. Grass reference ET0 was computed using the CIMIS Penman equation and ETc was computed for over 30 crop types. On average, Kc-based ET computations exceeded ETc determined by water balance (referred to as ETc?WB) by 8% on an annual basis over a 7 year period. The 8% overprediction was concluded to stem primarily from use of Kc that represents potential and ideal growing conditions, whereas crops in the study area were not always in full pristine condition due to various water and agronomic stresses. A 6% reduction to calculated Kc-based ET was applied to all crops, and a further 2% reduction was applied to lower value crops to bring the project-wide ET predicted by Kc-based ET into agreement with ETc?WB. The standard error of estimate (SEE) for annual ETc for the entire project based on Kc, following the reduction adjustment, was 3.4% of total annual ETc, which is considered to be quite good. The SEE for the average monthly ETc was 15% of average monthly ETc. A sensitivity analysis of the computational procedure for Kc showed that relaxation from using the FAO-56 dual Kc method to the more simple mean (i.e., single) Kc curve and relaxation of specificity of planting and harvest dates did not substantially increase the projectwide prediction error The use of the mean Kc curves, where effects of evaporation from wet soil are included as general averages, predicted 5% lower than the dual method for monthly estimates and 8% lower on an annual basis, so that no adjustment was required to match annual ET derived from water balance. About one half of the reduction in estimates when applying the single (or mean) Kc method rather than the dual Kc method was caused by the lack of accounting for evaporation from special irrigations during the off season (i.e., in between crops).  相似文献   

20.
Magnetized water is obtained by passing water through a strong permanent magnet installed in or on a feed pipeline. This study was performed at Gorgan Agricultural and Natural Resources Research Center, Gorgan province, Iran, to investigate soil moisture distribution under trickle irrigation. Two main treatments of magnetic and nonmagnetic water and three subtreatments of irrigation water salts, including well water as a control, 200-ppm calcium carbonate, and 400-ppm calcium carbonate were used. The experiment was laid out with a complete randomized block design with three replications. Soil moisture distribution around the emitters were measured 24?h after irrigation during the 3-month irrigation period. The results showed that the mean soil moisture contents at depths of 0–20, 20–40, and 40–60?cm below the emitter for the magnetized irrigation water treatment were more than the nonmagnetized irrigation water treatment, and the differences were significant at the 5% level. The irrigation with magnetic water as compared with the nonmagnetic water increased soil moisture up to 7.5%, and this increase was significant at the 1% level. The effect of irrigation water salinity on soil moisture was significant. The highest soil moisture content was from the 400-ppm calcium carbonate subtreatment. The use of magnetized water for irrigation is recommended to save irrigation water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号