首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previously we determined that abomasal infusion of l-carnitine increased in vitro hepatic fatty acid oxidation, decreased liver lipid accumulation, and supported higher fat-corrected milk yield in feed-restricted lactating cows. The objectives of this study were to examine the effects of supplemental l-carni-tine and amount of feed intake on free carnitine and carnitine ester concentrations in liver, muscle, milk, and plasma of lactating dairy cows. Eight lactating Holstein cows (132 ± 36 d in milk) were used in a replicated 4 × 4 Latin square design with 14-d periods to test factorial combinations of water or l-carnitine infusion (20 g/d; d 5 to 14) and ad libitum or restricted (50% of previous 5-d intake; d 10 to 14) dry matter intake. Plasma was obtained 3 times daily on d 4, 8, and 12; milk samples were collected on d 8, 9, 13, and 14. Liver and muscle were biopsied on d 14 of each period. Free carnitine, short-chain acylcarnitine, and long-chain acylcarnitine concentrations were determined using a radioenzymatic assay coupled with ion exchange chromatography. Abomasal l-carnitine infusion increased total carnitine in plasma on d 8 and d 12. All liver carnitine fractions were increased by carnitine infusion. Feed restriction elevated concentrations of free carnitine, long-chain acylcarnitine, and total carnitine in liver tissue from carnitine-infused cows but not in those infused with water. In muscle, acid-soluble carnitine, long-chain acylcarnitine, and total carnitine concentrations were increased by carnitine infusion and feed restriction without significant interaction. Feed restriction increased free carnitine concentrations in muscle from water-infused cows but not in carnitine-infused cows. Carnitine infusion increased the concentration of each milk carnitine fraction as well as milk carnitine output on d 8 to 9. On d 13 to 14, all carnitine fractions except short-chain acylcarnitine were increased in milk from water-infused, feed-restricted cows, whereas all fractions were increased in carnitine-infused, feed-restricted cows. Carnitine infusion increased total carnitine in plasma, liver, muscle, and milk during feed restriction, whereas feed restriction alone increased carnitine concentrations in muscle and milk but not in liver. Liver carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows during the periparturient period; therefore, supplemental l-carnitine might decrease liver lipid accumulation in periparturient cows.  相似文献   

2.
The objectives of this study were to determine the effects of dietary l-carnitine supplementation on liver lipid accumulation, hepatic nutrient metabolism, and lactation in multiparous cows during the periparturient period. Cows were assigned to treatments at d −25 relative to expected calving date and remained on the experiment until 56 d in milk. Treatments were 4 amounts of supplemental dietary carnitine: control (0 g/d of l-carnitine; n = 14); low carnitine (LC, 6 g/d; n = 11); medium carnitine (MC, 50 g/d; n = 12); and high carnitine (HC, 100 g/d; n = 12). Carnitine was supplied by mixing a feed-grade carnitine supplement with 113.5 g of ground corn and 113.5 g of dried molasses, which was then fed twice daily as a topdress to achieve desired daily carnitine intakes. Carnitine supplementation began on d −14 relative to expected calving and continued until 21 d in milk. Liver and muscle carnitine concentrations were markedly increased by MC and HC treatments. Milk carnitine concentrations were elevated by all amounts of carnitine supplementation, but were greater for MC and HC than for LC during wk 2 of lactation. Dry matter intake and milk yield were decreased by the HC treatment. The MC and HC treatments increased milk fat concentration, although milk fat yield was unaffected. All carnitine treatments decreased liver total lipid and triacylglycerol accumulation on d 10 after calving. In addition, carnitine-supplemented cows had higher liver glycogen during early lactation. In general, carnitine supplementation increased in vitro palmitate β-oxidation by liver slices, with MC and HC treatments affecting in vitro palmitate metabolism more potently than did LC. In vitro conversion of Ala to glucose by liver slices was increased by carnitine supplementation independent of dose. The concentration of nonesterified fatty acids in serum was not affected by carnitine. As a result of greater hepatic fatty acid β-oxidation, plasma β-hydroxybutyric acid was higher for the MC and HC treatments. Serum insulin was greater for all carnitine treatments, although plasma glucose was unaffected. Plasma urea N was lower and plasma total protein was higher for the MC and HC treatments. By decreasing liver lipid accumulation and stimulating hepatic glucose output, carnitine supplementation might improve glucose status and diminish the risk of developing metabolic disorders during early lactation.  相似文献   

3.
Thirty-five multiparous Holstein cows were used to determine the role of mitochondrial carnitine palmitoyltransferase I (CPT I) in liver on peripartal adaptations of fatty acid metabolism. From dry-off to parturition, cows were fed a diet at either ad libitum (n = 17) or restricted intake (RI, 80% of calculated requirements for net energy; n = 18). After parturition, all cows were fed a lactation diet. At 4 d in milk (DIM), cows underwent a physical examination and were classified as healthy (n = 15) or having at least one periparturient disorder (PD; n = 17). Cows in the healthy group were assigned to either a control (n = 6) group or a ketosis induction (KI; n = 9) group. Cows with periparturient disorders were assigned to a third (PDC; n = 17) group. Cows in control and PDC groups were fed for ad libitum intake. Cows in KI were fed at 50% of their respective intake at d 4 postpartum starting from 5 DIM and continuing to signs of clinical ketosis or until 14 DIM; cows then were returned to ad libitum intake. Liver was biopsied at −30 d, 1 d, at signs of clinical ketosis or 14 d, and 28 d relative to parturition. Mitochondria were isolated by differential centrifugation. Activity of CPT I was 5.4 and 7.6 nmol of palmitoylcarnitine formed per min/mg of protein for ad libitum and RI, respectively, at −30 DIM. Sensitivity of CPT I to its inhibitor, malonyl CoA, did not differ between ad libitum and RI cows. Differences in CPT I activity between ad libitum and RI were no longer significant at 1 DIM. Postpartum CPT I activity and malonyl CoA sensitivity at 1 DIM, onset of clinical ketosis or 14 DIM, and 28 DIM were not affected by prepartum intake (ad libitum vs. RI), postpartum health status (healthy vs. PD), or ketosis induction status (control vs. KI vs. PDC). Activity of CPT I was positively correlated with liver total lipid, liver triglyceride, liver triglyceride to glycogen ratio, and serum nonesterified fatty acids. Activity of CPT I and dry matter intake were not correlated. Prepartum intake affected prepartum CPT I activity but not malonyl CoA sensitivity. Neither induction of primary ketosis nor periparturient disorders greatly affected CPT I activity or sensitivity, which indicates that alterations of CPT I may not be a major factor in the etiology of primary ketosis or other periparturient disorders.  相似文献   

4.
Propionic acid is more hypophagic for cows with elevated hepatic acetyl coenzyme A (CoA) concentration in the postpartum period. The objective of this experiment was to evaluate the interaction of hepatic acetyl CoA concentration, which is elevated by intravenous lipid infusion, and intraruminal propionic acid infusion on feed intake and feeding behavior responses of lactating cows. Eight multiparous, ruminally cannulated, Holstein dairy cows past peak lactation were used in a replicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of treatments. Treatments were propionic acid (PI) infused intraruminally at 0.5 mol/h for 18 h starting 6 h before feeding and behavior monitoring or sham control (CO), and intravenous jugular infusion of lipid (LI, Intralipid 20%; Baxter US, Deerfield, IL) or saline (SI, 0.9% NaCl; Baxter US) infused at 250 mL/h for 12 h before feeding and behavior monitoring, and then 500 mL/h for 12 h after feeding. Changes in plasma concentrations of metabolites and hormones and hepatic acetyl CoA from before infusion until the end of infusion were evaluated. We observed a tendency for an interaction between PI and LI for the change in plasma nonesterified fatty acid (NEFA) concentration from the preliminary day to the end of the infusion period. Infusion of propionic acid decreased dry matter intake (DMI) 15% compared with CO, but lipid infusion did not affect DMI over the 12 h following feeding. Infusion of propionic acid tended to decrease hepatic acetyl CoA concentration from the preliminary day to the end of the infusion compared with CO, consistent with PI decreasing DMI by stimulating oxidation of acetyl CoA. Contrary to our expectations, LI did not increase concentration of NEFA or β-hydroxybutyrate in plasma, concentration of acetyl CoA in the liver, or milk fat yield, suggesting that the infused lipid was stored or oxidized by extra-hepatic tissues. As a result, we detected no interaction between PI and LI for DMI. Although the effect of PI on DMI was consistent with our previous results, this lipid infusion model using cows past peak lactation was not useful to simulate the lipolytic state of cows in the postpartum period in this experiment.  相似文献   

5.
Two experiments were conducted to evaluate if supplementing rumen-protected choline (RPC; Reashure, Balchem Encapsulates, Slate Hill, NY) could prevent or alleviate fatty liver in dairy cattle. The first experiment evaluated the effect of supplementing RPC on hepatic triacylglycerol (TAG) accumulation during fatty liver induction. Twenty-four dry cows between 45 to 60 d prepartum were paired by body weight (BW) and body condition score (BCS) and randomly assigned to control or supplementation with 15 g of choline as RPC/d. From d 0 to 6, before treatment application, all cows were fed 1.4 kg/d of concentrate and forage ad libitum. Samples of blood and liver, obtained during the pretreatment period, were used for covariate adjustment of blood metabolites and liver composition data. During fatty liver induction (d 7 to 17), cows were fed 1.4 kg/d of concentrate with or without supplementation with RPC, and forage intake was restricted, so cows consumed 30% of the total energy requirements for pregnancy and maintenance. Supplementation with RPC during fatty liver induction did not affect plasma glucose and plasma β-hydroxybutyrate (BHBA) concentration but did decrease plasma nonesterified fatty acid (NEFA; 703 vs. 562 μEq/L, SE = 40) and liver TAG accumulation (16.7 vs. 9.3 μg/μg of DNA, SE = 2.0). In the second experiment, we evaluated the effect of supplementing RPC on the clearance of liver TAG when cows were fed ad libitum after the induction of fatty liver by feed restriction. Twenty-eight cows between 45 and 60 d prepartum were paired according to BCS and BW and assigned to treatments. Fatty liver was induced by feeding 1.4 kg/ d of concentrate (without RPC) and restricting forage intake, so cows consumed 30% of maintenance and pregnancy energy requirements for 10 d. From d 11 to 16, after feed restriction, cows were fed forage ad libitum and 1.4 kg/d of concentrate with or without RPC. Treatments were not applied during fatty liver induction; however, following feed restriction, liver for cows assigned to control and RPC treatments contained 6.8 and 12.7 μg of TAG/μg of DNA, respectively. Measurements obtained before treatment served as covariates for statistical analysis. During the depletion phase, plasma glucose, BHBA, and NEFA were not affected by treatment. Liver TAG, expressed as covariate adjusted means, was 6.0 and 4.9 μg/μg of DNA (SE = 0.4) on d 13, and 5.0 and 1.5 μg/μg of DNA (SE = 0.9) on d 16 for control and RPC, respectively. Rumen-protected choline can prevent and possibly alleviate fatty liver induced by feed restriction.  相似文献   

6.
Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) ≤ 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NEL)/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NEL requirement) or restricted (80% of NEL requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NEL were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NEL. Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at − 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry period had more pronounced effects on peripartal lipid metabolism and DMI than did composition of the prepartum diet.  相似文献   

7.
Previous research has shown that a combination of feed restriction and dietary 1,3-butanediol starting at 14 d post-partum resulted in fatty liver and ketosis. Sixteen multiparous Holstein cows were used to determine effects of feed restriction or 1,3-butanediol as separate treatments. Treatments during d 14 to 42 postpartum were 1) control (ad libitum intake), 2) 20% feed restriction, or 3) control plus dietary 1,3-butanediol (5.5% of DM). From d 43 to 56, cows assigned to treatments 2 and 3 received a combination of feed restriction and butanediol. One cow on treatment 2 developed ketosis, but not fatty liver, after only 4 d of feed restriction. No other cows developed fatty liver or ketosis. Both treatments decreased milk production compared with controls. Feed restriction increased the extent of negative energy balance and caused transient increases in concentrations of NEFA, acetate, and beta-hydroxybutyrate in plasma. Concentrations of beta-hydroxybutyrate and insulin in plasma were increased by butanediol, which is a potent ketone body precursor. Concentration of glycogen in liver was less in feed-restricted cows, whereas glycogen and total lipid were greater in cows given butanediol separately. Gluconeogenic capacity of liver slices was not different among groups. Addition of 1,3-butanediol to in vitro incubation media decreased oxidation of propionate to CO2. Neither feed restriction nor dietary 1,3-butanediol as separate treatments induced the fatty liver and ketosis observed in earlier experiments in which the two treatments were given together.  相似文献   

8.
Increasing the oleic acid (18:1 cis-9) content of milk fat might be desirable to meet consumer concerns about dietary healthfulness and for certain manufacturing applications. The extent to which milk fat could be enriched with oleic acid is not known. Increasing the intestinal supply of polyunsaturated fatty acids decreases dry matter intake (DMI) in cows, but the effects of oleic acid have not been quantified. In a crossover design, 4 multiparous Holstein cows were abomasally infused with increasing amounts (0, 250, 500, 750, or 1,000 g/d) of free fatty acids from high-oleic sunflower oil (HOSFA) or with carrier alone. Continuous infusions (20 to 22 h/d) were for 7 d at each amount. Infusions were homogenates of HOSFA with 240 g/d of meat solubles and 11.2 g/d of Tween 80; controls received carrier only. The HOSFA contained (by wt) 2.4% 16:0, 1.8% 18:0, 91.4% 18:1 cis-9, and 2.4% 18:2. The DMI decreased linearly (range 22.0 to 5.8 kg/d) as the infused amount of HOSFA increased. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, and energy decreased as the infusion increased to 750 g/d and then increased when 1,000 g/d was infused. Digestibility of total fatty acids increased linearly as infused fatty acids increased. Yields of milk, fat, true protein, casein, and total solids decreased quadratically as infused amounts increased; decreases were greatest when 750 or 1,000 g/d of HOSFA were infused. Concentrations of fat and total solids increased at the higher amounts of HOSFA. The volume mean diameter of milk fat droplets and the diameter below which 90% of the volume of milk fat is contained both increased as HOSFA infusion increased. Concentrations of short-chain fatty acids, 12:0, 14:0, and 16:0 in milk fat decreased linearly as HOSFA increased. The concentration of 18:1 cis-9 (19.4 to 57.4% of total fatty acids) increased linearly as HOSFA infusion increased. Concentrations of 18:1 cis-9 in blood triglyceride-rich lipoproteins increased linearly as infusion increased, whereas contents of 14:0, 16:0, 18:0, total 18:1 trans, and 18:2n-6 decreased linearly. The composition and physical characteristics of milk fat can be altered markedly by an increased intestinal supply of 18:1 cis-9, which could influence processing characteristics and the healthfulness of milk fat. However, an increased supply of free 18:1 cis-9 to the intestine decreased DMI and milk production.  相似文献   

9.
The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d −17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The decline in muscle fatty acid oxidation within the first 4 wk of lactation accompanied with increased feed intake refer to greater supply of ruminally derived acetate, which as the preferred fuel of the muscle, saves long-chain fatty acids for milk fat production.  相似文献   

10.
The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition, blood metabolites, and hepatic triacylglycerol were evaluated in periparturient dairy cows. Thirty-eight multiparous cows were blocked into 19 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 3 wk before until 6 wk after calving. Both groups received the same basal diet, being a mixed feed of grass silage, corn silage, straw, and soybean meal, and a concentrate mixture delivered through transponder-controlled feed dispensers. For all cows, the concentrate mixture was gradually increased from 0 kg/day (wk −3) to 0.9 kg of dry matter (DM)/d (day of calving) and up to 8.1 kg of DM/d on d 17 postcalving until the end of the experiment. Additionally, a mixture of 60 g of a rumen-protected choline supplement (providing 14.4 g of choline) and of 540 g of soybean meal or a (isoenergetic) mixture of 18 g of palm oil and 582 g of soybean meal (control) was offered individually in feed dispensers. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at wk −3, d 1, d 4, d 7, d 10, wk 2, wk 3, and wk 6 and analyzed for glucose, nonesterified fatty acids, and β-hydroxybutyric acid. Liver biopsies were taken from 8 randomly selected pairs of cows at wk −3, wk 1, wk 4, and wk 6 and analyzed for triacylglycerol concentration. We found that choline supplementation increased DM intake from 14.4 to 16.0 kg/d and, hence, net energy intake from 98.2 to 109.1 MJ/d at the intercept of the lactation curve at 1 day in milk (DIM), but the effect of choline on milk protein yield gradually decreased during the course of the study. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.13 to 1.26 kg/d at the intercept of the lactation curve at 1 DIM, but the effect of choline on milk protein yield gradually decreased during the course of the study. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 DIM, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight, body condition score, and measured blood parameters. Choline supplementation decreased the concentration of liver triacylglycerol during the first 4 wk after parturition. Results from this study suggest that hepatic fat export in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.  相似文献   

11.
Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism. The experimental design was a split plot, with cow as the whole plot, treatment as the whole-plot factor, and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: the control (no infusion) or infusion (1,500 g/d of glucose infused into the abomasum from the day of calving). Cows were sampled at 12 d prepartum and at 4, 15, and 29 DIM. To study portal-drained visceral uptake of arterial glucose, [U-13C]glucose was continuously infused into the jugular vein on sampling days. Postpartum, voluntary dry matter intake and milk yield increased at a lower rate with the infusion compared with the control. The net portal flux of glucose increased with the infusion compared with the control, and 67 ± 5% of the infused glucose was recovered as increased portal flux of glucose. The net hepatic flux of glucose was lower with the infusion compared with the control; however, the net hepatic flux of glucose per kilogram of dry matter intake was not affected by treatment. The arterial concentrations of glucose and insulin decreased and concentrations of nonesterified fatty acids increased from prepartum to 4 DIM with the control, but these effects were not observed with the infusion. The arterial concentration of β-hydroxybutyrate decreased more from prepartum to 4 DIM with the infusion, compared with the control. Uptake of arterial [U-13C]glucose in the portal-drained viscera was affected neither by the infusion nor by the DIM and averaged 2.5 ± 0.2%. The whole-body glucose supply changed to be less dependent on the recycling of lactate (Cori cycle) with the infusion. It was concluded that small intestinal glucose absorption is an efficient source of glucose to the peripheral tissues of dairy cows in very early lactation. At least 67% of the available glucose was recovered in the portal vein without affecting hepatic gluconeogenesis. Infused cows produced less milk and had a lower feed intake, indicating that an improved glucogenic status in very early lactation impaired metabolic adaptations to lactation.  相似文献   

12.
The main objective of this study was to test the extent to which injecting glucagon subcutaneously for 14 d beginning at d 2 postpartum would prevent fatty liver development in transition dairy cows. Twenty-four multiparous Holstein cows were fed 6 kg of cracked corn in addition to their standard diet during the last 30 d of a dry period to induce postpartum development of fatty liver. Glucagon at either 7.5 or 15 mg/d or saline (control) was injected subcutaneously 3 times daily for 14 d beginning at d 2 postpartum. Glucagon at 15 mg/d prevented liver triacylglycerol accumulation in postpartum dairy cows. Glucagon at 7.5 mg/d showed potential for fatty liver prevention. Glucagon increased concentration of plasma glucose and insulin and decreased plasma nonesterified fatty acid concentrations. No effects of glucagon were detected on plasma β-hydroxybutyrate concentrations. Glucagon affected neither feed intake nor milk production. Moreover, milk composition was not altered by glucagon. Milk urea N concentrations decreased, and plasma urea N concentrations tended to decrease during glucagon administration, indicating that glucagon may improve protein use. Liver glycogen concentrations were not affected by glucagon. No significant differences in body condition scores were detected among treatments throughout the study. These results indicate that subcutaneous glucagon injections can prevent fatty liver in transition dairy cows without causing major production and metabolite disturbances.  相似文献   

13.
Peroxisome proliferator-activated receptor-α (PPARα) agonists increase fatty acid oxidation in liver of nonruminants. If similar effects occur in dairy cattle, enhanced hepatic oxidative capacity could decrease circulating nonesterified fatty acids and hepatic triacylglycerol accumulation in periparturient cows. The objectives of this study were 1) to determine whether partitioning of fatty acid metabolism by liver slices from weaned Holstein calves treated with PPARα agonists in vivo is altered compared with partitioning by liver slices from control (untreated) calves, and 2) to measure in vitro metabolism of palmitate and oleate by bovine liver slices and relate these to mRNA abundance for key enzymes. Weaned male Holstein calves (7 wk old; n = 15) were assigned to 1 of 3 groups for a 5-d treatment period: control (untreated), clofibrate (62.5 mg/kg of BW), or fish oil (250 mg/kg of BW). Calves treated with clofibrate consumed less dry matter. Body weight, liver weight, liver weight:body weight ratio, blood nonesterified fatty acids, β-hydroxybutyrate, and liver composition were not significantly different among treatments. Liver slices were incubated for 2, 4, and 8 h to determine in vitro conversion of [1-14C] palmitate and [1-14C] oleate to CO2, acid-soluble products, esterified products, and total metabolism. In liver slices incubated for 8 h, conversion of palmitate to CO2 was greater for calves treated with clofibrate compared with control calves or calves treated with fish oil. Conversion of palmitate to esterified products, total palmitate metabolism, and metabolism of oleate were not different among treatments. Conversion of palmitate to CO2 was greater than that from oleate for all treatments, but rates of total metabolism did not differ. Clofibrate increased or tended to increase liver expression of several PPARα target genes involved in fatty acid oxidation (e.g., ACADVL, ACOX1, CPT1A), whereas fish oil did not significantly affect genes associated with fatty acid oxidation but tended to increase DGAT1. Overall, our data indicated that bovine liver responded to clofibrate treatment but not fish oil, although increases in hepatic lipid metabolism were much less than those reported in rodents treated with clofibrate or fish oil. Applications of PPARα agonists may be of interest to increase the rate of hepatic fatty acid oxidation and decrease triacylglycerol accumulation in periparturient dairy cows.  相似文献   

14.
Low blood glucose concentrations after calving are associated with infertility in postpartum dairy cows perhaps because glucose is a master regulator of hormones and metabolites that control reproductive processes. The hypothesis was that low blood glucose postpartum is caused by inadequate glucose entry rate relative to whole-body demand as opposed to the alternative possibility that postpartum cows have a lower regulatory set point for blood glucose. Eight early postpartum (10 to 25 d) dairy cows (5 Holstein and 3 Guernsey) were jugular catheterized. During the first 24 h, cows were infused with physiological saline at 83.3 mL/h. After 24 h, the infusion solution was switched to 50% dextrose that was infused at a rate of 41.7 mL/h (total daily glucose dose = 500 g). On d 3 and d 4, the rate of glucose infusion was increased to 83.3 mL/h (daily dose = 1,000 g) and 125 mL/h (daily dose = 1,500 g), respectively. On d 5, physiological saline was infused at 83.3 mL/h. Blood was sampled hourly through a second jugular catheter (contralateral side) and analyzed for glucose, nonesterified fatty acids, β-hydroxybutyrate, insulin-like growth factor 1, and insulin. Blood glucose concentrations on d 1 (saline infusion) averaged 53.4 ± 1.7 mg/dL. Blood glucose concentrations increased on d 2 when cows were infused with 500 g/d and increased further on d 3 when cows were infused with 1,000 g of glucose/d. Increasing the infusion rate to 1,500 g/d on d 4 did not cause a further increase in blood glucose concentrations. Based on a segmented regression analysis, the upper physiological set point for blood glucose was 72.1 mg/dL. Both insulin and insulin-like growth factor 1 concentrations increased in response to glucose infusion and decreased when cows were infused with saline on d 5. Serum nonesterified fatty acids and β-hydroxybutyrate concentrations decreased in response to glucose infusion and rebounded upward on d 5 (saline infusion). In conclusion, early postpartum cows had circulating blood glucose concentrations that were well below the upper set point defined in this study (72.1 mg/dL). Infusing approximately 1,000 g of glucose daily increased blood glucose to the physiological set point and rapidly changed the hormonal and metabolic profile that typifies postpartum cows. The inability of the early postpartum cow to achieve an adequate entry rate for glucose relative to whole-body demand is a possible mechanism that links postpartum physiology and nutrition to reproduction in dairy cows.  相似文献   

15.
The objective of this experiment was to evaluate whether dose-response effects of intraruminal infusion of propionate on feeding behavior and dry matter intake (DMI) differ by stage of lactation. Six cows in early lactation (EL) and six cows in midlactation (ML) were assigned to blocks in a duplicated 6 × 6 Latin square design experiment. Treatments were mixtures of sodium propionate and sodium acetate containing sodium propionate at 0, 20, 40, 60, 80, and 100% of total volatile fatty acids (VFA), infused into the rumen continuously for 18 h starting 6 h before feeding at a rate of 21.7 mmol of sodium VFA/min. All cows were ruminally cannulated prior to the experiment. The diet was formulated to contain 30% NDF, and dry cracked corn was the major source of starch. We hypothesized that hypophagic effects of propionate infusion were greater for EL compared with ML because of greater plasma concentration of nonesterified fatty acids (275 vs. 76 μMeq/L) and expected greater basal oxidative metabolism in the liver for EL compared to ML. Propionate infusion decreased DMI for EL and ML, but a quadratic effect of propionate infusion was observed for ML but not EL. This indicated a greater marginal reduction in DMI at higher doses of propionate for ML compared to EL, contrary to our hypothesis. Propionate infusion decreased meal size similarly for both stages of lactation, but linearly increased intermeal interval for ML but not EL. We speculate that lower milk yield for ML compared with EL (30.8 vs. 42.0 kg/d) decreased glucose demand by the mammary gland and increased the proportion of infused propionate oxidized in the liver for ML compared to EL.  相似文献   

16.
Repeated bolus doses of tumor necrosis factor-α (TNFα) alters systemic metabolism in lactating cows, but whether chronic release of inflammatory cytokines from adipose tissue has similar effects is unclear. Late-lactation Holstein cows (n = 9–10/treatment) were used to evaluate the effects of continuous adipose tissue TNFα administration on glucose and fatty acid (FA) metabolism. Cows were blocked by feed intake and milk yield and randomly assigned within block to control or TNFα treatments. Treatments (4 mL of saline or 14 µg/kg of TNFα in 4 mL of saline) were infused continuously over 7 d via 2 osmotic pumps implanted in a subcutaneous adipose depot. Plasma, milk samples, milk yield, and feed intake data were collected daily, and plasma glucose turnover rate was measured on d 7. At the end of d 7, pumps were removed and liver and contralateral tail-head adipose biopsies were collected. Results were modeled with the fixed effect of treatment and the random effect of block. Treatment with TNFα increased plasma concentrations of the acute phase protein haptoglobin, but did not alter plasma TNFα, IL-4, IL-6, or IFN-γ concentrations, feed intake, or rectal temperature. Milk yield and composition were unchanged, and treatments did not alter the proportion of short- versus long-chain FA in milk on d 7. Treatments did not alter plasma free FA concentration, liver triglyceride content, or plasma glucose turnover rate. Surprisingly, TNFα infusion tended to decrease liver TNFα and IL-1 receptor 1 mRNA abundance and significantly increased adipose tissue IL-10 protein concentration. Continuous infusion of TNFα did not induce the metabolic responses previously observed following bolus doses delivered at the same rate per day. Metabolic homeostasis may have been protected by an adaptive anti-inflammatory response to control systemic inflammation.  相似文献   

17.
Effects of glucose infusion on feed intake, milk production, and metabolic responses of early postpartum cows fed diets varying in starch and protein concentration were evaluated by utilizing a randomized complete block design with a 2 × 2 factorial arrangement of treatments. Twenty-four multiparous Holstein cows were blocked by body condition score and 305-d mature-equivalent milk yield and randomly assigned at calving to 1 of 4 treatments. Treatments were continuous intrajugular infusion of glucose (GI) or isotonic saline (SI), and diets containing high starch, low crude protein (HSLP) or high crude protein, low starch (HPLS) concentrations. Treatments were initiated at the first scheduled feeding following parturition and lasted 12 d. The GI reduced cumulative dry matter intake and tended to reduce daily dry matter intake and meal size for HPLS but not HSLP compared with SI. The GI increased cumulative milk yield by 39 kg/12 d compared with SI by increasing it for HSLP but not HPLS. The HPLS treatment tended to increase loss of body condition from 0.65 to 0.82 body condition score units/12 d compared with HSLP. Consistent with this, HPLS increased plasma concentrations of nonesterified fatty acids, β-hydroxybutyrate, liver triglyceride, milk fat concentration and yield, 3.5% fat-corrected milk, and milk urea nitrogen compared with HSLP. Overall, the GI-HPLS treatment reduced feed intake by reducing meal size. The GI-HPLS may have reduced meal size by the independent or additive effects of (1) decreasing hepatic gluconeogenesis and promoting oxidation of acetyl coenzyme A (CoA), (2) elevated plasma nonesterified fatty acids from HPLS increasing the pool of acetyl CoA available to be oxidized, and (3) the HPLS diet increasing urea synthesis, which also provides the tricarboxylic acid cycle intermediate fumarate to promote oxidation of acetyl CoA.  相似文献   

18.
Thiazolidinediones (TZD) are potent, synthetic ligands for peroxisome proliferator activated receptor-gamma (PPAR-γ) that reduce plasma nonesterified fatty acids (NEFA) and potentiate the action of insulin in peripheral tissues of several species. Holstein cows (n = 9) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism and milk production. Cows were limit-fed a total mixed ration (TMR) during the prepartum period to provide no more than 130% of predicted energy requirements. During the postpartum period cows were fed a common TMR for ad libitum intake. Cows were administered either 2,4-TZD (4.0 mg/kg of body weight) or saline (control) by intrajugular infusion once daily from 25 d before expected parturition until parturition. Plasma samples were collected daily from 26 d before expected parturition through 7 d postpartum. Plasma NEFA concentrations decreased during the prepartum period (d −21 to −1; 70 vs. 83 ± 4 μEq/L) and tended to be decreased during the peripartum period (d −7 to d +7; 113 vs. 205 ± 32 μEq/L) due to prepartum TZD administration. Plasma concentrations of glucose were not affected by treatment; however, plasma β-hydroxybutyrate concentrations decreased in TZD-treated cows (8.6 vs. 10.7 ± 1.7 mg/dL) as parturition approached, and plasma insulin concentrations increased during the peripartum period (0.65 vs. 0.38 ± 0.07 ng/mL). Postpartum liver triglyceride and glycogen content was not affected by treatment. Prepartum TZD administration tended to increase dry matter intake during the peripartum and postpartum periods (16.6 vs. 14.6 ± 0.8 kg/d and 20.0 vs. 17.2 ± 1.2 kg/d, respectively). Milk yield for the first 30 d postpartum and milk composition measured on d 8 postpartum were not affected by treatment. There was no effect of prepartum TZD administration on insulin-dependent glucose utilization assessed using insulin challenge during either the prepartum or postpartum periods. These results suggest that administration of TZD during the late prepartum period has the potential to improve metabolic health and DMI of periparturient dairy cows and warrants further investigation.  相似文献   

19.
Thiazolidinediones (TZD) are potent synthetic ligands for peroxisome proliferator-activated receptor-γ that have been shown previously to reduce plasma nonesterified fatty acids and increase peripartal dry matter intake (DMI) in dairy cows. Data from Holstein cows (n = 36) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism, milk production, and ovarian activity. Cows were administered 0, 2.0, or 4.0 mg of TZD/kg of BW by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples were collected daily from 22 d before expected parturition through 21 d postpartum and twice weekly from wk 4 through 9 postpartum. In response to increasing TZD dosage, plasma nonesterified fatty acid concentrations decreased linearly during the postpartum period (d 0 to +21: 348, 331, 268 ± 31 μEq/L, respectively). Plasma concentrations of glucose were highest in cows administered 4.0 mg of TZD/kg of BW during the peripartum and postpartum periods (d −7 to +7: 57.9, 57.8, 61.1 ± 0.8 mg/dL and d 0 to +21: 51.6, 49.3, 54.7 ± 1.1 mg/dL, respectively). Plasma concentrations of β-hydroxybutyrate were increased during the peripartum period by TZD administration (9.6, 9.9, 10.2 ± 0.3 mg/dL) but were not affected during the postpartum period. Plasma insulin was not affected by treatment during any time period. Postpartum liver triglyceride content was decreased linearly (11.0, 10.4, 4.2 ± 1.6%) and glycogen content was increased linearly (2.16, 2.38, 2.79 ± 0.19%) by prepartum TZD administration. Prepartum TZD administration linearly increased DMI during the peripartum period (d −7 to +7: 16.1, 17.2, 17.3 ± 0.5 kg/d). Cows administered TZD prepartum maintained higher postpartum body condition scores than control cows (wk 1 through 9: 2.77, 2.89, 3.02 ± 0.05). There was no effect of prepartum TZD on milk yield; however, yields of 3.5% fat-corrected milk (52.2, 54.6, 48.0 ± 1.6 kg/d) and most other milk components were decreased in cows that received 4.0 mg of TZD/kg of BW prepartum. Prepartum TZD administration linearly decreased the number of days to first ovulation (29.3, 28.3, 19.0 ± 3.6 d). These results suggest that prepartum administration of TZD improves metabolic health and DMI of periparturient dairy cows and may decrease reliance on body fat reserves during early lactation.  相似文献   

20.
Forty-eight multiparous Holstein cows were fed treatments consisting of either 0, 45, 60, or 75 g/d of a rumen-protected choline (RPC) source in a completely randomized design from 21 d before expected calving to 63 d postpartum to determine whether choline supplementation to the diet would affect hepatic fatty acid and glucose metabolism, key metabolites in plasma, and cow performance. Dry matter intake (DMI), milk yield, body condition score, and body weights (BW) were similar for cows receiving the four treatments. Feeding RPC tended to increase yields of milk fat, 3.5% fat-corrected milk, and total solids. Plasma concentrations of nonesterified fatty acids and beta-hydroxybutyrate were not different among cows fed the four treatments. Concentrations of triglycerides in liver were similar, but concentrations of glycogen in liver increased as cows consumed increasing amounts of RPC. Hepatic capacity for storage of [1-(14)C]palmitate as esterified products within liver slices tended to decrease as the amount of RPC consumed by cows increased; however, effects of treatment on hepatic capacity for oxidation of [1-(14)C]palmitate to CO2 were not significant. These data imply that choline may increase the rate of very low density lipoprotein synthesis and secretion of esterified lipid products from liver. Hepatic capacities for conversion of [1-(14)C] propionate to CO2 and to glucose in liver were similar among cows fed the four treatments. Collectively, these results suggest that hepatic fatty acid metabolism and cow performance are responsive to increasing the supply of choline during the periparturient period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号