首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHBA) concentrations are used to evaluate energy status in peripartum dairy cows. Blood samples from 37 cows in the week before parturition and 47 cows in the first week after parturition from 3 dairy herds were taken 1 h before the first feeding (−1 h) as well as 4 and 10 h after the first feeding. Nonesterified fatty acid concentrations were measured in samples from cows before calving and BHBA was measured in samples from lactating cows. Mean NEFA concentrations in the prepartum cows were significantly higher at −1 h (0.20 mmol/L) than at 4 h (0.14 mmol/L), but were not different between 4 and 10 h (0.17 mmol/L). Using a cutpoint of NEFA ≥0.4 mmol/L, 32% of cows had high concentrations at −1 h compared with 16% of the same cows at 4 and 10 h. There were no differences in mean BHBA between −1 h (646 μmol/L) and 4 h (596 μmol/L), but mean BHBA was higher at 10 h (711 μmol/L) than at −1 h. Using a cutpoint of BHBA ≥1,400 μmol/L, there were no differences in the proportions of high BHBA, which were 9, 11, and 13% of cows at −1, 4, and 10 h, respectively. Prandial effects on serum NEFA may affect interpretation of this analyte. In order not to misclassify cows when assessing energy status, samples for NEFA must at least be taken at a consistent time relative to feeding within a given herd. When sampling cows to monitor elements of energy metabolism in the prepartum period, there was twice the probability of detecting animals with NEFA values ≥0.4 mmol/L if they were sampled 1 h before the first feed delivery compared with sampling the same cows 4 or 10 h after feeding.  相似文献   

2.
Colostrum formation and lactogenesis in the mammary gland and the timing of parturition are regulated by endocrine signals. Changes in progesterone (P4) and prolactin (PRL) are considered key events that inhibit colostrum formation, trigger parturition, and signal the onset of lactation. The goal of our study was to determine if colostrum yield and composition and immunoglobulin transfer are affected by prepartum milking relative to the decrease in P4, peak of PRL, or occurrence of parturition. Twenty-three multiparous cows were randomly assigned to 1 of 2 groups: (1) control with first milking at 4 h postcalving (CON, n = 11), and (2) treatment group with first milking approximately 1 d before calving and second milking at 4 h after parturition (APM, n = 12). Colostrum yields were recorded and proportional samples were analyzed for immunoglobulin G (IgG) concentration. Blood plasma samples for the analyses of P4 and PRL were collected 3 times daily at 8-h intervals for 4 d prepartum and again taken at 4 h after parturition. Total colostrum mass of APM cows was higher than that of CON cows. Immunoglobulin G concentration and protein content did not differ between antepartum milking in APM cows and postpartum milking in CON cows. Colostrum IgG concentration and protein content in APM cows at the postpartum milking were lower compared with the IgG concentration established at the prepartum (APM) and postpartum milkings of CON cows. Immunoglobulin G mass did not differ in first and second colostrum collection in APM cows but was lower compared with that of CON cows. The sum of IgG mass in APM cows (prepartum + postpartum collections) did not differ from that of CON cows. Lactose and fat in milk (concentration and mass) increased from first to second milking in APM cows. Total mass of lactose and fat in APM cows (prepartum + postpartum collections) was greater compared with that of CON cows. The finding that the time of milking relative to parturition, P4 decrease, and PRL peak slightly affected yield and quality of colostrum emphasizes the complex interactions of numerous endocrine and morphological changes occurring during colostrogenesis and lactogenesis in dairy cows. The considerably rapid transfer of immunoglobulins into colostrum of prepartum-milked cows within a few hours leads to the hypothesis that the transfer of IgG can be very fast and—contrary to earlier findings—persist at least until parturition.  相似文献   

3.
Eighty-five multiparous Holstein cows were used in a completely randomized design with restrictions to evaluate the effects of prepartum carbohydrate (CHO) source and monensin on periparturient dry matter intake (DMI), blood parameters, and lactation performance of dairy cows. Dietary treatments were arranged in a 2 × 2 factorial arrangement with a conventional (CONV) dry cow diet and a nonforage fiber source (NFFS) dry cow diet not supplemented (−) or supplemented (+) with 330 mg/cow per d of monensin as a top dressing. The CONV diet contained 70% forage and the NFFS diet contained nonforage fiber sources such that 28% of the forage was replaced with cottonseed hulls and soyhulls. The experimental diets (CONV and NFFS) were fed throughout the entire dry period (for 60 d before parturition). Monensin was top dressed once daily starting 28 d (27 ± 1.8 SD) before the expected calving date and continued until parturition. After parturition, all cows received the same lactating cow diet. During the last 28 d of gestation, cows receiving the NFFS diets prepartum had greater DMI (15.8 vs. 11.9 kg/d), DMI as a percentage of body weight (2.1 vs. 1.6% of body weight), plasma glucose (67.4 vs. 64.6 mg/dL), and serum insulin concentrations (0.59 vs. 0.45 ng/mL), and lower plasma nonesterified fatty acid concentrations (185 vs. 245 μEq/L) compared with cows receiving the CONV diets prepartum. Average milk production or composition during the first 56 d of lactation was not significantly affected by prepartum source of CHO, monensin, or their combination; however, there was a trend for the prepartum CHO source to affect milk production over time. Supplementation of monensin as a top dressing for 28 d prepartum had no effect on periparturient measurements. The prepartum diet did not affect postpartum DMI, blood glucose, nonesterified fatty acids, insulin concentrations, or liver triglyceride content. Results from this research demonstrated that partly replacing conventional dietary carbohydrate sources with NFFS, cottonseed hulls and soyhulls, in the dry cow diet improved or maintained the prepartum DMI and therefore enhanced the prepartum metabolic status, as indicated by key blood metabolite concentrations. This greater prepartum DMI may potentially increase milk production during early lactation.  相似文献   

4.
Thiazolidinediones (TZD) are potent, synthetic ligands for peroxisome proliferator activated receptor-gamma (PPAR-γ) that reduce plasma nonesterified fatty acids (NEFA) and potentiate the action of insulin in peripheral tissues of several species. Holstein cows (n = 9) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism and milk production. Cows were limit-fed a total mixed ration (TMR) during the prepartum period to provide no more than 130% of predicted energy requirements. During the postpartum period cows were fed a common TMR for ad libitum intake. Cows were administered either 2,4-TZD (4.0 mg/kg of body weight) or saline (control) by intrajugular infusion once daily from 25 d before expected parturition until parturition. Plasma samples were collected daily from 26 d before expected parturition through 7 d postpartum. Plasma NEFA concentrations decreased during the prepartum period (d −21 to −1; 70 vs. 83 ± 4 μEq/L) and tended to be decreased during the peripartum period (d −7 to d +7; 113 vs. 205 ± 32 μEq/L) due to prepartum TZD administration. Plasma concentrations of glucose were not affected by treatment; however, plasma β-hydroxybutyrate concentrations decreased in TZD-treated cows (8.6 vs. 10.7 ± 1.7 mg/dL) as parturition approached, and plasma insulin concentrations increased during the peripartum period (0.65 vs. 0.38 ± 0.07 ng/mL). Postpartum liver triglyceride and glycogen content was not affected by treatment. Prepartum TZD administration tended to increase dry matter intake during the peripartum and postpartum periods (16.6 vs. 14.6 ± 0.8 kg/d and 20.0 vs. 17.2 ± 1.2 kg/d, respectively). Milk yield for the first 30 d postpartum and milk composition measured on d 8 postpartum were not affected by treatment. There was no effect of prepartum TZD administration on insulin-dependent glucose utilization assessed using insulin challenge during either the prepartum or postpartum periods. These results suggest that administration of TZD during the late prepartum period has the potential to improve metabolic health and DMI of periparturient dairy cows and warrants further investigation.  相似文献   

5.
Our objective was to compare the effects of different prepartum dietary phosphorus concentrations on periparturient metabolism and performance. Forty-two late pregnant multiparous Holstein cows were fed 0.21, 0.31, or 0.44% P (dry basis) for 4 wk before expected calving. After parturition, all cows were fed a common lactation diet (0.40% P). In the prepartum period, cows fed 0.21% P had lower blood serum P concentrations compared with cows fed 0.31 or 0.44% P. However, serum P concentrations of all cows were within the normal range (4 to 8 mg/dL) until the day of calving when average concentrations dropped below 4 mg/dL. From 3 to 14 d postpartum, serum P of cows fed 0.21% P was greater than that of cows fed 0.31 or 0.44% P. No cows presented with or were treated for clinical hypophosphatemia in the periparturient period. Total serum Ca was lower before calving through 2 d postpartum for cows fed 0.44% P compared with those fed 0.21 or 0.31%. Prepartum dietary P treatments did not alter blood osteocalcin, hydroxyproline, and deoxypyridinoline, indicators of bone metabolism, or concentrations of parathyroid hormone or 1,25-dihydroxyvitamin D3. Energy-corrected milk yield and milk composition (first 28 d of lactation) were not affected by prepartum dietary P concentrations. It is concluded that feeding 0.21% P (34 g of P/cow daily) prepartum is adequate for periparturient multiparous Holstein cows with high metabolic demands and genetic potential for milk production. No adverse effects on periparturient health, dry matter intake, or 28-d lactation performance resulted.  相似文献   

6.
Thiazolidinediones (TZD) are potent synthetic ligands for peroxisome proliferator-activated receptor-γ that have been shown previously to reduce plasma nonesterified fatty acids and increase peripartal dry matter intake (DMI) in dairy cows. Data from Holstein cows (n = 36) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism, milk production, and ovarian activity. Cows were administered 0, 2.0, or 4.0 mg of TZD/kg of BW by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples were collected daily from 22 d before expected parturition through 21 d postpartum and twice weekly from wk 4 through 9 postpartum. In response to increasing TZD dosage, plasma nonesterified fatty acid concentrations decreased linearly during the postpartum period (d 0 to +21: 348, 331, 268 ± 31 μEq/L, respectively). Plasma concentrations of glucose were highest in cows administered 4.0 mg of TZD/kg of BW during the peripartum and postpartum periods (d −7 to +7: 57.9, 57.8, 61.1 ± 0.8 mg/dL and d 0 to +21: 51.6, 49.3, 54.7 ± 1.1 mg/dL, respectively). Plasma concentrations of β-hydroxybutyrate were increased during the peripartum period by TZD administration (9.6, 9.9, 10.2 ± 0.3 mg/dL) but were not affected during the postpartum period. Plasma insulin was not affected by treatment during any time period. Postpartum liver triglyceride content was decreased linearly (11.0, 10.4, 4.2 ± 1.6%) and glycogen content was increased linearly (2.16, 2.38, 2.79 ± 0.19%) by prepartum TZD administration. Prepartum TZD administration linearly increased DMI during the peripartum period (d −7 to +7: 16.1, 17.2, 17.3 ± 0.5 kg/d). Cows administered TZD prepartum maintained higher postpartum body condition scores than control cows (wk 1 through 9: 2.77, 2.89, 3.02 ± 0.05). There was no effect of prepartum TZD on milk yield; however, yields of 3.5% fat-corrected milk (52.2, 54.6, 48.0 ± 1.6 kg/d) and most other milk components were decreased in cows that received 4.0 mg of TZD/kg of BW prepartum. Prepartum TZD administration linearly decreased the number of days to first ovulation (29.3, 28.3, 19.0 ± 3.6 d). These results suggest that prepartum administration of TZD improves metabolic health and DMI of periparturient dairy cows and may decrease reliance on body fat reserves during early lactation.  相似文献   

7.
Effects of dietary fat supplementation prepartum on liver lipids and metabolism in dairy cows are contradictory. Thus, we examined in 18 German Holstein cows (half-sib; first lactation 305-d milk yield >9,000 kg) whether dietary fat:carbohydrate ratio during the last trimester of gestation affects lipid metabolism and milk yield. The diets were formulated to be isoenergetic and isonitrogenous but differed in rumen-protected fat (FD; 28 and 46.5 g/kg of dry matter during far-off and close-up dry period; mainly C16:0 and C18:1) and starch concentration [carbohydrate diet (CD); 2.3 times as much starch as FD]. Diets were given ad libitum starting 12 wk before expected parturition. After parturition all cows were fed a single lactation diet ad libitum for 14 wk. With the FD treatment, dry matter intake was depressed prepartum, milk yield during first 4 wk of lactation was lower (36.9 vs. 41.0 kg/d), and postpartum energy balance during this period was more negative. During the first 4 wk, cows in the FD group had lower lactose percentage and yield but higher milk fat, whereas milk protein and fat yield as well as energy-corrected milk did not differ. Between wk 5 and 14, milk fat and milk protein percentage was lower in CD than in FD. Milk fat C14:0 was lower and C16:1 was higher in the FD group. For FD cows, plasma triacylglycerol, nonesterified fatty acids, and cholesterol concentrations were higher prepartum, whereas plasma β-hydroxybutyrate and glucose concentrations were lower. During the first 10 d after parturition, plasma triacylglycerol concentration was higher in FD, and prepartum plasma glucose and cholesterol differences persisted during the first 14 wk of lactation. Irrespective of prepartum nutrient composition, concentrations of plasma leptin and subcutaneous fat leptin mRNA decreased between −10 d to +10 d relative to parturition, and liver lipids and glycogen reached maximum and minimal values, respectively, 10 d after parturition. Acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat decreased between −10 d to +1 d relative to parturition by 97%, whereas it was generally much lower in the liver and remained at a low level until wk 14 of lactation. In conclusion, feeding a diet containing rumen-protected fat during late lactation and dry period until calving negatively affected dry matter intake, energy balance, and milk yield during subsequent lactation, did not change acetyl-coenzyme A carboxylase α mRNA abundance in subcutaneous fat, and was not beneficial for liver lipid accumulation.  相似文献   

8.
Holstein cows (n = 72) entering second or later lactation were used to determine whether metabolic indices and hepatic capacities for oxidation and gluconeogenesis from propionate are affected by source of carbohydrate in the prepartum diet and chromium-l-methionine (Cr-Met) supplementation throughout the periparturient period. Cows were fed prepartum diets as total mixed rations with the concentrate portion based either on starch-based cereals [high nonfiber carbohydrate (NFC); 1.59 Mcal/kg of net energy for lactation (NEL), 14.4% crude protein (CP), 40.3% NFC] or nonforage fiber sources (low NFC; 1.54 Mcal/kg of NEL, 14.5% CP, 33.6% NFC) from 21 d before expected parturition until parturition. After parturition all cows were fed a common lactation total mixed ration (1.74 Mcal/kg of NEL, 16.5% CP, 40.0% NFC). The Cr-Met was supplemented once daily via gelatin capsule at dosages of 0, 0.03, or 0.06 mg of Cr/kg of BW0.75. Thus, treatments were in a 2 (carbohydrate source) × 3 (Cr-Met) factorial arrangement. There was no effect of prepartum carbohydrate source on pre- and postpartum plasma concentrations of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), insulin, glucagon, or insulin to glucagon ratio. However, cows fed the low NFC diet during the prepartum period tended to have greater plasma NEFA and lower BHBA concentrations postpartum. Liver glycogen concentrations tended to be greater on d 1 postpartum for cows fed low NFC prepartum. Supplementing 0.03 mg/kg of BW0.75 of Cr as Cr-Met increased prepartum plasma glucose and glucagon concentrations and tended to decrease prepartum plasma NEFA concentrations compared with either 0 or 0.06 mg of Cr/kg of BW0.75. Postpartum plasma glucose concentrations decreased linearly and glucagon concentrations were increased quadratically by administering increasing amounts of Cr-Met. Supplementing Cr-Met did not affect prepartum plasma concentrations of insulin or BHBA, postpartum NEFA or BHBA, or liver composition. There was an interaction of prepartum carbohydrate source and Cr-Met supplementation such that in vitro hepatic conversion of [1-14C]propionate to both CO2 and glucose was similar or increased when Cr-Met was supplemented to cows fed the low NFC diet but decreased when Cr-Met was supplemented to cows fed the high NFC diet. Insulin addition in vitro did not affect hepatic metabolism of propionate on d 1 postpartum. Overall, both the NFC content of the prepartum diet and Cr-Met had only modest effects on metabolic indices in this experiment.  相似文献   

9.
Data from 137 published trials involving 2,545 calvings were analyzed using random effects normal logistic regression models to identify risk factors for clinical hypocalcemia in dairy cows. The aim of the study was to examine which form, if any, of the dietary cation anion difference (DCAD) equation provided the best estimate of milk fever risk and to clarify roles of calcium, magnesium, and phosphorus concentrations of prepartum diets in the pathogenesis of milk fever. Two statistically equivalent and biologically plausible models were developed that predict incidence of milk fever. These models were validated using data from 37 trials excluded from the original data used to generate the models; missing variables were replaced with mean values from the analyzed data. The preferred models differed slightly; Model 1 included prepartum DCAD, and Model 2 included prepartum dietary concentrations of potassium and sulfur alone, but not sodium and chloride. Other factors, included in both models were prepartum dietary concentrations of calcium, magnesium, phosphorus; days exposed to the prepartum diet; and breed. Jersey cows were at 2.25 times higher risk of milk fever than Holstein cows in Model 1. The results support the DCAD theory of greater risk of milk fever with higher prepartum dietary DCAD (odds ratio = 1.015). The only DCAD equation supported in statistical analyses was (Na+ + K+) − (Cl + S2−). This finding highlights the difference between developing equations to predict DCAD and those to predict milk fever. The results support a hypothesis of a quadratic role for Ca in the pathogenesis of milk fever (model 1, odds ratio = 0.131; Model 2, odds ratio = 0.115). Milk fever risk was highest with a prepartum dietary concentration of 1.35% calcium. Increasing prepartum dietary magnesium concentrations had the largest effect on decreasing incidence of milk fever in both Model 1 (odds ratio = 0.006) and Model 2 (odds ratio = 0.001). Increasing dietary phosphorus concentrations prepartum increased the risk of milk fever (Model 1, odds ratio = 6.376; Model 2, odds ratio = 9.872). The models presented provide the basis for the formulation of diets to reduce the risk of milk fever and strongly support the need to evaluate macro mineral nutrition apart from DCAD of the diet.  相似文献   

10.
Data from multiparous Holstein cows (n = 43) were used to determine whether supplementation of anions to low-potassium (K) prepartum diets would improve periparturient energy and macromineral status and affect performance during the postpartum period. Beginning 21 d before expected parturition, cows were fed a control diet (1.29% K; +10 mEq/100 g; n = 21) or a low dietary cation-anion difference (DCAD) diet (1.29% K; −15 mEq/100 g; n = 22) with anions provided through a combination of sulfate from calcium sulfate dihydrate (0.40% S total ration) and chloride (1.17% Cl total ration) from SoyChlor 16-7 (West Central, Ralston, IA). All cows were fed the same postpartum diet from parturition through 63 d postpartum. Feeding anions decreased overall urine pH (8.17 vs. 6.70) during the prepartum period. Overall, peripartum concentrations of plasma Ca, P, and Mg were similar between treatments; however, concentrations of plasma Ca tended to be increased during the first 24 h postcalving in cows fed the low DCAD diet. Overall, concentrations of plasma P tended to be increased by feeding the anionic diet prepartum; this effect was more pronounced during the immediate peripartal period. Anionic supplementation did not affect incidence of clinical (<5 mg/dL) and subclinical (5 to 8 mg/dL) hypocalcemia, clinical hypophosphatemia (<2 mg/dL), or clinical (<1.1 mg/dL) and subclinical (1.1 to 1.8 mg/dL) hypomagnesemia. Nevertheless, subclinical hypophosphatemia (2 to 4 mg/dL) tended to be decreased at 16 h postcalving and was decreased at d 2 postpartum for cows fed the anionic diet prepartum. Anion supplementation decreased prepartum dry matter intake (15.6 vs. 14.4 kg/d), but did not affect postpartum dry matter intake (22.4 vs. 23.0 kg/d), milk yield (46.5 vs. 46.1 kg/d), or content and yield of milk fat and true protein. Plasma concentrations of energy-related metabolites (glucose, nonesterified fatty acids, β-hydroxybutyrate) were similar for both groups during the prepartum and postpartum periods. Glucose rate of appearance was determined by continuous infusion of 6,6-dideuterated glucose in a subset of cows between 6 and 10 d prepartum (control, n = 12; low DCAD, n = 9) and 7 and 10 d postpartum (control, n = 9; low DCAD, n = 8) periods. Glucose rate of appearance was not affected by treatment during the prepartum or postpartum periods. Overall, anion supplementation of low K diets improved P status during the early postpartum period, but did not affect aspects of energy metabolism or periparturient performance.  相似文献   

11.
Composition of the aqueous phase of mammary secretions during the nonlactating and postpartum periods was determined in nine cows. Protein concentrations increased until several days before parturition and then declined precipitously. Lactose declined rapidly in early involution, remained low during the middle of the nonlactating period, and increased rapidly prepartum. The pH of secretions followed an inverse pattern to lactose and was negatively correlated with lactose during the nonlactating period but not the postpartum period. Peroxidase activity initially increased in secretions in early involution, then declined until parturition when peroxidase activity again increased. Activities of the glycosidic enzymes N-acetyl-beta-D-glucosaminidase, beta-glucuronidase, and alpha-mannosidase increased through the nonlactating period until 2 to 3 wk prepartum, from which time all three enzyme activities declined through the postpartum period. The magnitude of increase in the glycosidases was not the same; peak activity of N-acetyl-beta-D-glucosaminidase increased 20-fold over the activity at d 1 of involution, whereas beta-glucuronidase and alpha-mannosidase increased 4 to 5-fold over the same period.  相似文献   

12.
Retained placenta (RP), defined as fetal membranes not being expelled within 24 h after calving, is a costly disease in multiparous dairy cows that has been linked to immune suppression, infections, elevated lipid mobilization, and depleted status of antioxidants including α-tocopherol, and that increases the risk of other diseases (OD) in early lactation. Early detection of cows at increased risk of developing RP, OD, or both in early lactation could improve treatment success and result in improved milk production and reproductive performance. To identify risk indicators of RP, OD, or both, we used a nested case-control design and compared multiparous dairy cows that developed RP (n = 32) with cows that remained healthy (H; n = 32) or cows that developed OD (n = 32) in early lactation. We compared peripartal body condition score (BCS) as well as serum concentrations of α-tocopherol, metabolites [β-hydroxybutyrate (BHBA), cholesterol, glucose, nonesterified fatty acids (NEFA), and urea N], haptoglobin, and macrominerals (i.e., calcium, magnesium, and phosphorus) on d −21, −14, −7, −3, −1, 0, 1, 3, 7, 14, 21, 28, 35, 42, and 49 postpartum. In addition, average serum concentrations were calculated for each cow for the last 3 wk prepartum, for 3 and 2 wk prepartum combined, for the last week prepartum, and for the morning after calving and compared between groups. The RP cows had lower BCS than the H or OD cows until 2 wk postpartum. During the prepartal periods, RP and OD cows had lower α-tocopherol concentrations (corrected or not for cholesterol concentration) and higher NEFA and BHBA concentrations than H cows. Thus, lower prepartal BCS could be an early predictor for RP risk, and lower α-tocopherol concentrations and higher NEFA and BHBA concentrations could be early predictors for disease.  相似文献   

13.
Administration of peroxisome proliferator-activated receptor gamma (PPARγ) ligands, thiazolidinediones (TZD), to prepartum dairy cattle has been shown to improve dry matter intake and decrease circulating nonesterified fatty acids (NEFA) around the time of calving. The objective of this work was to elucidate mechanisms of TZD action in transition dairy cattle by investigating changes in plasma leptin, tumor necrosis factor-α (TNFα), the revised quantitative insulin sensitivity check index (RQUICKI), and adipose tissue gene expression of leptin, PPARγ, lipoprotein lipase (LPL), and fatty acid synthase (FAS). Multiparous Holstein cows (n = 40) were administered 0, 2.0, or 4.0 mg of TZD/kg of body weight (BW) by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples collected daily from 22 d before expected parturition through 21 d postpartum were analyzed for glucose, NEFA, and insulin. Plasma samples collected on d −14, −3, −1, 1, 3, 7, 14, and 49 relative to parturition were also analyzed for leptin and TNFα. Adipose tissue was collected on d 7 before expected parturition from a subset of cows, and gene expression was examined via quantitative real-time PCR. A tendency for a treatment by time effect on plasma leptin prepartum was observed such that values were similar on d −14 but cows receiving 2.0 mg/kg of BW of TZD tended to have lower circulating leptin as calving approached. Postpartum leptin tended to be increased linearly (2.3, 2.4, and 2.5 ± 0.1 ng/mL for 0, 2.0, and 4.0 mg/kg treatments, respectively) in cows that received TZD prepartum. Plasma TNFα increased linearly (2.6, 3.7, and 4.0 ± 0.1 pg/mL) in response to TZD treatment and decreased through the first week postpartum. Calculation of RQUICKI 1/[log(glucose) + log(insulin) + log(NEFA)] suggested altered insulin sensitivity in cows administered TZD that may depend on day relative to calving. Administration of TZD increased adipose tissue expression of PPARγ mRNA (11.0, 13.3, and 12.8 ± 1.9). Administration of TZD had a quadratic effect on gene expression of leptin (16.2, 10.7, and 17.4 ± 1.6) and no effect on LPL expression, and expression of FAS was lower for TZD-treated cows than for controls (8.2, 4.2, and 6.1 ± 1.8, respectively). Results imply altered expression and plasma concentrations of leptin, increased plasma TNFα concentrations, and increased expression of PPARγ in adipose tissue as potential mechanisms for the effects of TZD administration on transition dairy cattle.  相似文献   

14.
An experiment was conducted to determine the effect of prepartum plane of energy intake on metabolic profiles related to lipid metabolism and health in blood and liver. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A high energy diet [1.62 Mcal of net energy for lactation (NEL)/kg; 15% crude protein] was fed for either ad libitum intake or restricted intake to supply 150% (OVR) or 80% (RES) of energy requirements for dry cows in late gestation. To limit energy intake to 100% of National Research Council requirements at ad libitum intake, chopped wheat straw was included as 31.8% of dry matter for a control diet (CON; 1.21 Mcal of NEL/kg of dry matter; 14.2% crude protein). Regardless of parity group, OVR cows had greater concentrations of glucose, insulin, and leptin in blood prepartum compared with either CON or RES cows; however, dietary effects did not carry over to the postpartum period. Prepartum nonesterified fatty acids (NEFA) were lower in OVR cows compared with either CON or RES cows. Postpartum, however, OVR cows had evidence of greater mobilization of triacylglycerol (TAG) from adipose tissue as NEFA were higher than in CON or RES cows, especially within the first 10 d postpartum. Prepartum β-hydroxybutyrate (BHBA) was not affected by diet before parturition; however, within the first 10 d postpartum, OVR cows had greater BHBA than CON or RES cows. Prepartum diet did not affect liver composition prepartum; however, OVR cows had greater total lipid and TAG concentrations and lower glycogen postpartum than CON or RES cows. Frequency of ketosis and displaced abomasum was greater for OVR cows compared with CON or RES cows postpartum. Controlling or restricting prepartum energy intake yielded metabolic results that were strikingly similar both prepartum and postpartum, independent of parity group. The use of a bulky diet controlled prepartum energy intake in multiparous and primiparous cows, improved metabolic status postpartum, and reduced the incidence of health problems. When metabolic profiles are considered collectively, cows overfed energy prepartum exhibited an “overnutrition syndrome” with characteristics of clinical symptoms displayed by diabetic or obese nonruminant subjects. This syndrome likely contributed to metabolic dysfunction postpartum.  相似文献   

15.
Multiparous Holstein cows (n = 108) were used to determine the associations of cytological endometritis (CE) with plasma nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) as markers of energy metabolism, calculated energy balance (EB), and plasma haptoglobin (Hp) as a marker of inflammation during the periparturient period and early lactation. Evaluation of endometrial cytology by low-volume uterine lavage was conducted on 1 d between 40 and 60 d postcalving. The incidence of CE among cows sampled was 40%. The area under the curve (AUC) was calculated for both NEFA and BHBA using data collected from 3 wk before to 3 wk after parturition. Data for NEFA and BHBA AUC were stratified into prepartum (wk −3 to parturition) and postpartum (parturition to wk +3) for statistical analysis. Prepartum AUC for neither NEFA nor BHBA was associated with subsequent CE; however, cows that subsequently developed CE tended to have higher postpartum AUC for NEFA and had higher postpartum AUC for BHBA. Consistent with the results for plasma NEFA and BHBA, calculated EB during the prepartum period was not different in cows that did or did not develop CE; however, cows with CE had lower EB during the 6-wk postpartum period compared with cows without CE. Analysis of EB by week (wk −3 to −1 before calving and wk +1 to +6 postcalving) indicated that EB in cows with CE was lower at wk +1, +2, and +3 and tended to be lower at wk +6 than cows without CE. Plasma Hp concentrations were analyzed from wk +1 to +8 of lactation; concentrations of Hp were not different during either wk +1 or the entire postpartum period between cows that did or did not develop CE. These results suggest that lower energy status during the first 3 wk postpartum, but not necessarily systemic inflammation, is associated with subsequent development of CE.  相似文献   

16.
The objectives of this study were: 1) to determine the effect of providing additional prepartum concentrate on the occurrence and severity of ruminal acidosis (RA) and lactational performance during the periparturient period in primiparous cows; and 2) to characterize the occurrence and severity of RA during the periparturient period. We hypothesized that providing additional concentrate prepartum would reduce postpartum RA. Fourteen ruminally cannulated Holstein heifers were paired by expected calving date and body condition score. The heifers were assigned to 1 of 2 prepartum feeding regimens: 1) a control treatment consisting of a far-off diet (forage:concentrate, F:C = 80:20) fed from d −60 to d −25 and a close-up diet (F:C = 54:46) fed from d −24 until parturition; or 2) a high-concentrate (HC) feeding program consisting of 4 prepartum diets, HC-1 (F:C = 68:32) fed from d −60 to d −43, HC-2 (F:C = 60:40) fed from d −42 to d −25, HC-3 (F:C = 52:48) fed from d −24 to d −13, and HC-4 (F:C = 46:54) fed from d −12 until parturition. All cows received the same lactation diet postpartum. Ruminal pH was measured continuously from d −5 to d +5, and for 3 consecutive days starting on d +17 ± 1.2, d +37 ± 1.4, and d +58 ± 1.5 relative to parturition using an indwelling ruminal pH system. Ruminal acidosis was considered to occur when ruminal pH was <5.8 (total RA). Ruminal acidosis was further partitioned into: 1) mild RA (5.8 > ruminal pH > 5.5), 2) moderate RA (5.5 > ruminal pH > 5.2), and 3) acute RA (ruminal pH < 5.2). Feeding additional concentrate prepartum did not reduce postpartum RA. In fact, cows fed the HC treatment had more daily episodes of acute RA than cows fed the control treatment. Day relative to parturition affected the occurrence and severity of RA; RA increased following parturition and was sustained thereafter. The DM intake during the last 5 d of gestation was lower for cows fed the HC treatment compared with cows fed the control treatment, but lactational performance was not affected. We conclude that, under the conditions imposed, feeding additional concentrate prepartum does not reduce postpartum RA. Furthermore, the incidence and severity of RA increases immediately postpartum, emphasizing the need to develop and implement feeding strategies that reduce this risk.  相似文献   

17.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

18.
The present study investigated the flooring preference during the 30 h before parturition in Holstein dairy cows housed individually in a maternity pen. Seventeen multiparous cows were moved, on average, 2 d before expected calving date into an individual maternity pen with 3 different flooring surfaces: 10 cm of sand, pebble-top rubber mats, or concrete flooring, each covered with 15 cm of straw. Calving location, lying time, and total time and number of lying bouts on each of the floor types were recorded during 2 periods: precalving (24 to 29 h before calving) and at calving (0 to 5 h before calving). Ten cows calved on sand, 6 on concrete, and 1 on the rubber mat. Lying bouts increased during the hours closest to calving, regardless of flooring. The number of lying bouts did not differ between flooring types precalving but cows had more lying bouts on sand and concrete compared with rubber at calving. Cows spent more time lying down on sand and concrete compared with rubber precalving, but lying times did not differ between treatments at calving. Cows that calved on sand spent more time lying on sand at calving compared with the other 2 flooring types. Cows that calved on concrete did not show a flooring preference at calving. These results indicate that rubber mats are the least preferred by dairy cows in the maternity pens, even when covered with a deep layer of straw.  相似文献   

19.
Two trials were conducted to examine factors potentially influencing the measurement of blood β-hydroxybutyric acid (BHBA) in dairy cows. The objective of the first trial was to study effects of sampling time on BHBA concentration in continuously fed dairy cows. Furthermore, we determined test characteristics of a single BHBA measurement at a random time of the day to diagnose subclinical ketosis considering commonly used cut-points (1.2 and 1.4 mmol/L). Finally, we set out to evaluate if test characteristics could be enhanced by repeating measurements after different time intervals. During 4 herd visits, a total of 128 cows (8 to 28 d in milk) fed 10 times daily were screened at 0900 h and preselected by BHBA concentration. Blood samples were drawn from the tail vessels and BHBA concentrations were measured using an electronic BHBA meter (Precision Xceed, Abbott Diabetes Care Ltd., Witney, UK). Cows with BHBA concentrations ≥0.8 mmol/L at this time were enrolled in the trial (n = 92). Subsequent BHBA measurements took place every 3 h for a total of 8 measurements during 24 h. The effect of sampling time on BHBA concentrations was tested in a repeated-measures ANOVA repeating sampling time. Sampling time did not affect BHBA concentrations in continuously fed dairy cows. Defining the average daily BHBA concentration calculated from the 8 measurements as the gold standard, a single measurement at a random time of the day to diagnose subclinical ketosis had a sensitivity of 0.90 or 0.89 at the 2 BHBA cut-points (1.2 and 1.4 mmol/L). Specificity was 0.88 or 0.90 using the same cut-points. Repeating measurements after different time intervals improved test characteristics only slightly. In the second experiment, we compared BHBA concentrations of samples drawn from 3 different blood sampling locations (tail vessels, jugular vein, and mammary vein) of 116 lactating dairy cows. Concentrations of BHBA differed in samples from the 3 sampling locations. Mean BHBA concentration was 0.3 mmol/L lower when measured in the mammary vein compared with the jugular vein and 0.4 mmol/L lower in the mammary vein compared with the tail vessels. We conclude that to measure BHBA, blood samples of continuously fed dairy cows can be drawn at any time of the day. A single measurement provides very good test characteristics for on-farm conditions. Blood samples for BHBA measurement should be drawn from the jugular vein or tail vessels; the mammary vein should not be used for this purpose.  相似文献   

20.
Mammary arteriovenous differences of prolactin concentration and net mammary uptake of prolactin from blood were quantified near parturition in 9 dairy cows. Six cows were milked once daily for at least 6 d before parturition, and prepartum lactogenesis occurred in 3 of 6 cows. Prepartum milking 2 or more d before parturition abruptly increased secretion of prolactin into blood, but milkings within 1 d before or after parturition did not increase prolactin secretion. Concentrations of prolactin in whole milk sampled over 8 d before parturition (64.5 ng/ml) were substantially greater than those occurring several days after parturition (19 ng/ml). Milk prolactin concentrations were unaffected by the successful induction of prepartum lactogenesis, which greatly increased prepartum yields of milk (2 to 8 kg/milking). Therefore, the alveolar lumenal content of prolactin was greatest in pregnant cows with prepartum lactogenesis. This enhanced content of intraalveolar prolactin before parturition was associated with an absence of mammary uptake of prolactin immediately prior to ejection of the prolactin-containing milk from the alveoli. However, prolactin uptake was quickly restored to about 2 micrograms/min per half udder shortly after milk ejection. During the prepartum period, an enhanced intraalveolar reservoir of 200 to 400 micrograms prolactin, due to induction of prepartum lactogenesis, appears to saturate temporarily all putative sites for uptake of prolactin from blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号