首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Changes in the physico-chemical properties and microstructure of milk fat globules were investigated during the manufacture and ripening of Emmental cheese. The measurement of fat globule size and apparent zeta-potential showed that they were slightly affected during cheese milk preparation, i.e. storage of cheese milk overnight at 4 °C and pasteurisation. After rennet-induced coagulation and heating of curd grains, coalescence caused the formation of large fat globules (i.e.>10 μm). The structure of fat in Emmental cheese was characterised in situ using confocal laser scanning microscopy (CLSM). The rennet-induced coagulation lead to the formation of a continuous network of casein strands in which fat globules of various sizes were entrapped. Heating of curd grains induced the formation of fat globule aggregates. Pressing of the curd grains resulted in the greatest disruption of milk fat globules, their coalescence, the formation of non-globular fat (free fat) and the release of the milk fat globule membrane (MFGM) material. This study showed that milk fat exists in three main forms in ripened Emmental cheese: (i) small fat globules enveloped by the MFGM; (ii) aggregates of partially disrupted fat globules and (iii) free fat, resulting from the disruption of the MFGM and allowing free triacylglycerols to fill voids in the protein matrix. The curd grain junctions formed in Emmental cheese were also characterised using CLSM: they are compact structures, rich in protein and devoid of fat globules.  相似文献   

2.
The temperature treatment of cream is the time-consuming step in butter production. A better understanding of the mechanisms leading to partial coalescence, such as fat crystallization during ripening and churning of the cream, will contribute to optimization of the production process. In this study, ripening and churning of cream were performed in a rheometer cell and the mechanisms of cream crystallization during churning of the cream, including the effect of ripening time, were investigated to understand how churning time and partial coalescence are affected. Crystallization mechanisms were studied as function of time by differential scanning calorimetry, nuclear magnetic resonance and by X-ray scattering. Microstructure formation was investigated by small deformation rheology and static light scattering. The study demonstrated that viscosity measurements can be used to detect phase inversion of the emulsion during churning of the cream in a rheometer cell. Longer ripening time (e.g., 5 h vs. 0 h) resulted in larger butter grains (91 vs. 52 µm), higher viscosity (5.3 vs. 1.3 Pa·s), and solid fat content (41 vs. 13%). Both ripening and churning time had an effect on the thermal behavior of the cream. Despite the increase in solid fat content, no further changes in crystal polymorphism and in melting behavior were observed after 1 h of ripening and after churning. The churning time significantly decreased after 0.5 h of ripening, from 22.9 min for the cream where no ripening was applied to 16.23 min. Therefore, the crystallization state that promotes partial coalescence (i.e., aggregation of butter grains) is obtained within the first hour of cream ripening at 10°C. The present study adds knowledge on the fundamental processes of crystallization and polymorphism of milk fat occurring during ripening and churning of cream. In addition, the dairy industry will benefit from these insights on the optimization of butter manufacturing.  相似文献   

3.
The functionality of Zedu gum as a fat mimetic in low‐fat brined cheese was studied. The physicochemical, textural, rheological, microstructural and sensory properties of cheese samples modified with 0.1% and 0.25% of Zedu gum were compared to those of control cheeses (low‐fat and full‐fat cheeses with no fat mimetic) during ripening. To obtain further information about the cheeses' structure and interactions between macromolecules (casein protein and Zedu gum), other parameters were analysed by differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy. Incorporation of Zedu gum into low‐fat cheese caused an open microstructure and softer texture in comparison with the control low‐fat cheese. The thermal properties and FTIR spectra of the cheeses were influenced by both fat mimetic and ripening time. On days 1 and 60 of ripening time, the lower value of enthalpy of the low‐fat cheese with 0.25 g of Zedu gum/kg of milk (AS 0.25) in comparison with control low‐fat cheese could have been due to the electrostatic nature of the interactions between Zedu gum and casein protein. On both days, the FTIR spectrum of AS 0.25 showed a well separated absorption at 1746 cm?1 possibly due to the formation of ester groups as a result of the interaction of the carbonyl groups in Zedu gum with the hydroxyl groups of some amino acids in casein.  相似文献   

4.
O. Goñi 《LWT》2008,41(2):303-310
The aim of this work was to determine the physicochemical characteristics of non-conventional starch from cherimoya fruit in order to suggest possible applications of these polymers in various food systems. The influence of the stage of ripening on thermal behaviour of cherimoya fruit starch was also analysed. Starch was visualized by cryo-SEM, and gelatinization and retrogradation properties were studied by differential scanning calorimetry (DSC). DSC was also used for accurate determination of the starch content of cherimoya dry matter. The calorimetric profile for cherimoya fruit starch showed a peak temperature (gelatinization) over a range from 63.7 to 65.2 °C and enthalpy values between 14.8 and 15.9 J g−1 during ripening. Neither temperatures nor melting enthalpy of recrystallized amylopectin differed over the ripening period. The recrystallization rate, as measured by changes in melting enthalpy with time according to the Avrami model, showed a very slight retrograde tendency. It is suggested that these characteristics could be useful in products where good quality and long shelf-life are required.  相似文献   

5.
The effect of monoacylglycerols (rich in oleic acid, stearic acid or lauric acid) on milk fat crystallization in recombined cream is examined using differential scanning calorimetry to study crystallization kinetics, nuclear magnetic resonance to measure solid fat content during storage and interfacial tension analyses to analyze interfacial properties. The long-chain saturated monoacylglycerols (stearic acid) form upon cooling a two-dimensional crystal at the interface, called chain crystallization, which induces interfacial heterogeneous nucleation. Also, the crystal growth and α–β′ polymorphic transition were accelerated. On the contrary, long-chain unsaturated monoacylglycerols (oleic acid) didn't affect the crystallization behavior while mid-chain saturated monoacylglycerols (lauric acid) showed intermediate behavior. None of the monoacylglycerols influenced the solid fat content after storage for 5 days at 5 °C. The observed differences in nucleation mechanism and crystallization kinetics may influence the microstructural arrangement of the milk fat inside the fat globules and consequently the partial coalescence rate and hence the whipping properties of recombined cream.  相似文献   

6.
Milk fat exists as globules in its natural state in milk. The potential of using globular fat to modulate the rheological properties and crystallization behavior in butter-like emulsions was studied in the present work. We conducted a comparative study of butter-like emulsions, with a fat phase consisting of 0, 10, 25, 50, or 100% anhydrous milk fat (AMF), the remaining fat being butter grains, and all samples containing 20% water, to obtain systematic variation in the ratio of globular fat. All emulsions were studied over 4 wk of storage at 5°C. By combining small and large deformation rheology, we conducted a detailed characterization of the rheological behavior of butter-like emulsions. We applied differential scanning calorimetry to monitor thermal behavior, confocal laser scanning microscopy for microstructural analysis, and low-field pulsed nuclear magnetic resonance spectrometry to measure solid fat content. By combining these techniques, we determined that increasing the fraction of globular fat (by mixing with butter grains) decreases the hardness of butter-like emulsions up to an order of magnitude at d 1. However, no difference was observed in thermal behavior as a function of butter grain content, as all emulsions containing butter grains revealed 2 endothermal peaks corresponding to the high (32.7°C ± 0.6) and medium (14.6°C ± 0.1) melting fractions of fatty acids. In terms of microstructure, decreasing the amount of butter grains in the emulsions resulted in formation of a denser fat crystal network, corresponding to increased hardness. Moreover, microstructural analysis revealed that the presence of butter grains resulted in faster formation of a continuous fat crystal network compared with the 100% AMF sample, which was dominated by crystal clusters surrounded by liquid oil. During storage, hardness remained stable and no changes in thermal behavior were observed, despite an increase in solid fat content of up to 5%. After 28 d of storage, we observed no difference in either microstructural or rheological properties, indicating that formation of primary bonds occurs primarily within the first day of storage. The rheological behavior of butter-like emulsions is not determined solely by hardness, but also by stiffness related to secondary bonds within the fat crystal network. The complex rheological behavior of milk fat-based emulsions is better characterized using multiple parameters.  相似文献   

7.
Milk with an increased content of unsaturated fatty acids was obtained by incorporating 60% of extruded linseed into the concentrate of cows. Two groups of Holstein cows (3 animals/group) were fed a concentrate (control or linseed enriched) together with the same roughage diet (ad libitum). After an adaptation period of 3 wk, evening and morning milk samples were collected every 7 d for 3 wk. Milk was decreamed and anhydrous milk fat (AMF) was isolated from the fat fraction by using the Bureau of Dairy Industries method. The objective of this study was to investigate if the crystallization mechanism of milk fat changed when the content of unsaturated fatty acids was increased. Therefore, the crystallization behavior of a milk fat enriched with unsaturated fatty acids was compared with that of a control milk fat. Nonisothermal crystallization was investigated with differential scanning calorimetry, and 1-step and 2-step isothermal crystallization behaviors were investigated using pulsed nuclear magnetic resonance, differential scanning calorimetry, and x-ray diffraction. A higher content of unsaturated fatty acids in AMF resulted in an increased proportion of low melting triglycerides. These triglycerides lowered the solid fat content profile, particularly at refrigerator temperatures. Furthermore, they induced some changes in the crystallization and melting behaviors of milk fat compared with a control AMF, although no fundamental changes in the crystallization mechanism could be revealed. Even though a lower melting point could be observed for milk fat with a higher content of unsaturated fatty acids, a similar degree of supercooling was needed to initiate crystallization, resulting in a shift in onset temperature of crystallization toward lower temperatures. In addition, slower crystallization kinetics were measured, such as a lower nucleation rate and longer induction times, although crystallization occurred in a similar polymorphic crystal lattice. During melting, a shift in offset temperature toward lower temperatures could be observed for the 3 melting fractions of AMF in addition to a higher proportion of low melting triglycerides. These results demonstrate that a higher content of unsaturated fatty acids has some effect on the crystallization behavior of milk fat. This knowledge could be used to produce dairy products of similar or superior quality compared with conventional products by intervening in the production process of dairy products.  相似文献   

8.
The mechanical and thermal properties of a fat crystal network are determined by factors such as chemical composition, solid fat content (SFC), and crystal habit (polymorphism and microstructure). Processing conditions affect the crystallization of fats, thus having an effect on their functional properties. The effects of cooling rate on the macroscopic properties of a fat crystal network were studied by crystallizing anhydrous milk fat (AMF) and lard either rapidly (5 °C/min, Newtonian cooling) or slowly (0.1 °C/min, stepwise cooling). AMF crystallized rapidly was harder than AMF crystallized slowly and had a higher SFC. Moreover, its solid state was in a more metastable polymorphic form. Upon slow crystallization, AMF had a lower SFC and its solid state was in a more stable polymorphic form. AMF crystallized under fast cooling yielded a higher Avrami constant (k), and a lower Avrami exponent (n) than AMF crystallized under slow cooling. The microstructure was also different between the two treatments. When crystallized rapidly, crystallites were numerous and small, while a smaller number of larger crystallites were observed when crystallized slowly. Similar results were observed for lard crystallized under the same conditions. The mechanical properties of both AMF and lard, expressed as hardness, depend on a variety of factors, which include the SFC, polymorphism of the solid state as well as the microstructure of the fat crystal network.  相似文献   

9.
Microfluidization of cheese milk at different temperatures and pressures altered the meltability and rheological properties of Mozzarella cheese. Pasteurized milks, standardized to 1.0 (low-fat (LF)) or 3.2 (full fat (FF)) g fat/100 g milk, heated to 10, 43, or 54 °C, and then microfluidized at pressures of 34, 103, or 172 MPa, were used to manufacture Mozzarella cheese. Cheeses made from nonmicrofluidized milks served as controls. During the hot water step, only control cheeses and cheeses made with milk microfluidized at 10 °C could be stretched while all others had short curds that did not fuse together. Cheese responses to different stresses (heat, compression, torsion, and oscillatory shear) were measured after 1 and 6 weeks of storage. FF cheeses made with the control milks and milks processed at 10 °C/34 MPa or 10 °C/103 MPa were softer and less rigid, and had the lowest visco-elastic properties and the highest meltabilities of all the cheeses. Microfluidization of the cheese milk did not improve the melt or rheology of LF cheeses. Microfluidization of milk with fat in the liquid state at higher pressures resulted in smaller lipid droplets that altered the component interactions during the formation of the cheese matrix and resulted in LF and FF Mozzarella cheeses with poor melt and altered rheology.  相似文献   

10.
A three-week algal meal supplementation of the cows' basal diet resulted in an increase in the firmness of milk fat crystallized isothermally at 5 degrees C for 24 h--the apparent elastic constant increased from 100 to 224 N/mm. This was accompanied by a decrease in solid fat content, from 47.7% to 44.4%. The crystallization behaviour of milk fat was also modified significantly. The rate constant of crystallization (Avrami constant) of the enriched milk fat at 19 degrees C was approximatly 20 times higher than that of control milk fat. A shorter induction time of nucleation was also observed in the temperature range [20, 27 degrees C]. These effects were attributed to a higher degree of supersaturation of the enriched milk fat. Enriched milk fat nucleated in a more stable beta' polymorphic form at 5 degrees C, while control milk fat nucleated in the metastable alpha form, as determined by powder X-ray diffraction and differential scanning calorimetry. Changes in the microstructure of the material were observed by polarized light microscopy at 5 degrees C. The enriched milk fat displayed a greater amount of crystal clustering than the control. This effect was reflected in a decrease in the box-counting mass fractal dimension (Db) of the fat crystal network from 1.853 to 1.809. The decrease in Db closely predicted the observed 2.2-fold increase in the elastic constant of the fat. These changes in mechanical properties, crystallization behaviour and microstructure were driven by an increase in the 18:1 trans and a decrease in the 18:1 cis fatty acid content of the enriched milk fat.  相似文献   

11.
In this study, the effect of diverse thermal treatments on the physical characteristics of anhydrous milk fat was monitored with the use of scanning calorimetry, firmness analysis, electron microscopy and image analysis. The optimal properties of milk fat were achieved for the thermal treatment taking into account its composition as well as melting and solidification points of the main triacylglycerol fractions (temperatures: 6/20.5/14 °C). Unfavourable results were obtained for the one‐stage system (10 °C/13 h). These results may be helpful in optimising parameters of milk fat crystallisation in high‐fat products, and the fractal analysis has proven to be useful in the evaluation of fat crystallisation.  相似文献   

12.
Reduced fat milks were pasteurized, for 15 s, at temperatures ranging from 72 to 88°C to give levels of whey protein denaturation varying from ˜ 3 to 35%. The milks were converted into reduced fat cheddar cheese (16–18% fat) in 500 litre cheese vats; the resultant cheese curds were milled at pH values of 5.75 and 5.35. Raising the milk pasteurization temperature resulted in impaired rennet coagulation properties, longer set-to-cut times during cheese manufacture, higher cheese moisture and moisture in the non-fat cheese substance, lower levels of protein and calcium and lower cheese firmness. Increasing the pH at curd milling from 5.35 to 5.75 affected cheese composition and firmness, during ripening, in a manner similar to that of increasing milk pasteurization temperature. Despite their effects on cheese composition and rheology, pasteurization temperature and pH at curd milling had little influence on proteolysis or on the grading scores awarded by commercial graders during ripening over 303 days .  相似文献   

13.
The crystallization behavior of anhydrous milk fat has been examined with a new instrument coupling time-resolved synchrotron x-ray diffraction as a function of temperature (XRDT) at both small and wide angles and high-sensitivity differential scanning calorimetry. Crystallizations were monitored at cooling rates of 3 and 1 degrees C/ min from 60 to -10 degrees C to determine the triacylglycerol organizations formed. Simultaneous thermal analysis permitted the correlation of the formation/melting of the different crystalline species monitored by XRDT to the thermal events recorded by differential scanning calorimetry. At intermediate cooling rates, milk fat triacylglycerols sequentially crystallize in 3 different lamellar structures with double-chain length of 46 and 38.5 A and a triple-chain length of 72 A stackings of alpha type, which are correlated to 2 exothermic peaks at 17.2 and 13.7 degrees C, respectively. A time-dependent slow sub-alpha <--> alpha reversible transition is observed at -10 degrees C. Subsequent heating at 2 degrees C/min has shown numerous structural rearrangements of the alpha varieties into a single beta' form before final melting. This polymorphic evolution on heating, as well as the final melting point observed (approximately 39 degrees C), confirmed that cooling at 3 degrees C/min leads to the formation of crystalline varieties that are not at equilibrium. An overall comparison of the thermal and structural properties of the crystalline species formed as a function of the cooling rate and stabilization time is presented. The influence on crystal size of the cooling rates applied in situ using temperature-controlled polarized microscopy is also determined for comparison.  相似文献   

14.
The objectives of this study were to provide a better understanding of the effects of triacylglycerol (TAG) and non-TAG components (minor lipids) of milk fat on phase and crystallization behavior of binary mixtures of palm kernel oil (PKO) and the physical properties of corresponding compound coatings. Binary mixtures of a fractionated PKO with the different milk fats were examined for melting profiles, crystallization kinetics, and crystalline microstructures, and polymorphic changes during storage. Compound coatings were made with equivalent binary fat mixtures and measured for hardness and bloom formation. Milk fat and milk fat fractions affected crystallization rates of fractionated PKO, depending on the melting point of the fat. High-melting components resulted in more rapid crystallization, whereas the original milk fat and low-melting components inhibited crystallization. The crystal structure (e.g., number, size, shape) of the PKO crystals was influenced significantly by the addition of milk fat fractions and was influenced by the presence or absence of the minor lipids in milk fat. Milk fat and milk fat fractions had a softening effect on fractionated PKO, which was apparent in the binary mixtures as well as the compound coatings. In general, as the solid fat content (at 25 degrees C) of the binary mixtures increased, the hardness of the respective coatings increased. This also was related to an increased rate of bloom formation during storage.  相似文献   

15.
The chemical, physicochemical, proteolysis, sensory, and texture characteristics of white cheeses made from interesterified fat were examined throughout ripening for 90 days. The water-soluble nitrogen based ripening indexes of cheeses increased throughout the ripening period. However, there were not large quantitative differences between the peptide profiles of the all cheese samples. Cheeses produced by using fully interesterified fat had higher values for hardness, chewiness, and gumminess than that of control cheese (p<0.05). The polyunsaturated to saturated fatty acid ratios of cheeses were increased due to the presence of interesterified fat. The cholesterol values of cheeses decreased at the rate of between 58.83–89.04% depending on interesterified fat addition. In the sensory analysis, similar scores were obtained for both the control cheese and the other cheeses. The results showed that interesterified fat in cheese production could be used to fully or partially replace the milk fat in cheese.  相似文献   

16.
Reduced-fat Cheddar cheese (RFC) was manufactured from standardized milk (casein/fat, C/F ˜ 1.8), obtained by (1) mixing whole milk (WM) and skim milk (SM) (control) or (2) mixing liquid milk protein concentrate (LMPC) and 35% fat cream (experimental). The percentage yield, total solid (TS) and fat recoveries in the experimental RFC were 22.0, 63.0 and 89.5 compared to 9.0, 50.7 and 87.0 in the control RFC, respectively. The average % moisture, fat, protein, salt and lactose were 40.7, 15.3, 32.8, 1.4 and 0.07%, respectively, in the experimental cheese and 39.3, 15.4, 33.0, 1.3 and 0.10%, respectively, in the control cheese. No growth of nonstarter lactic acid bacteria (NSLAB) was detected in the control or the experimental cheeses up to 3 months of ripening. After 6 months of ripening, the experimental cheese had 107 cfu NSLAB/g compared to 106 cfu/g in the control. The control cheese had higher levels of water-soluble nitrogen (WSN) and total free amino acids after 6 months of ripening than the experimental cheese. Sensory analysis showed that the experimental cheeses had lower intensities of milk fat and fruity flavours and decreased bitterness but higher intensities of sulphur and brothy flavours than in the control cheese. The experimental cheeses were less mature compared to the control after 270 days of ripening. It can be concluded from the results of this study that LMPC can be used in the manufacture of RFC to improve yield, and fat and TS recovery. However, proteolysis in cheese made with LMPC and cream is slower than that made with WM and SM.  相似文献   

17.
Blends of anhydrous milk fat (AMF) and canola oil (CO) were cooled from 35 to 5°C at 0.1°C/min, held for 24 h, and centrifuged to separate the liquid and crystalline fractions. The blends’ crystallization behaviors and microstructures depended on the level of CO present. Onset and half times of crystallization reflected a slower crystallization mechanism at higher levels of CO dilution. These differences were accompanied by a change in microstructure from large spherulites to smaller particles. The biggest change occurred between the 1:4 and 1:5 blends. Canola oil dilution also influenced the polymorphism of milk fat. Whereas only the β′ polymorph was observed in the crystallized 1:2 blend, the β polymorph predominated in the 1:8 blend. Some solubilization of AMF solids into CO was observed. This increased gradually with increasing CO concentration. Compositional analysis revealed the exchange of AMF and CO species between the liquid and crystalline fractions. The crystalline fractions were slightly enriched in AMF triacylglycerols, particularly with the more dilute blends (1:7 and 1:8). Large amounts of oil were trapped in the crystalline fractions, particularly for the concentrated AMF:CO blends where the β′ crystals and spherulitic microstructures were observed. Although the solid fat content profiles of the fractionated blends were marginally higher than those of the starting blends, the samples were very soft and oily. This strategy of using CO to fractionate milk fat was limited by the poor separation of solids and liquid during centrifugation.  相似文献   

18.
Emmental cheeses were produced with control native milk fat globules (CFG) or smaller ones (SFG) selected from the same milk by microfiltration. Either the same regular technology was used for both cheeses (so-called SFGreg and CFGreg), or two different adapted technologies to obtain cheeses with the same moisture (so-called SFGadapt and CFGadapt). SFGreg cheeses were more humid and presented lower firmness and longness than CFGreg cheeses. Yellow index was greater for SFGadapt than CFGadapt cheeses while melting coefficient and extrusion force were similar. SFGadapt cheeses exhibited improved sensory characteristics. Stretching and elasticity increase were always greater for SFG than for the corresponding CFG cheeses; eyes were always smaller in SFG cheeses. Confocal micrographs revealed larger inclusions of non-globular fat in CFG cheeses; there were more fat globules and aggregates in SFG cheeses. The ultrastructure of milk fat played a role in the functional and sensory properties of Emmental cheese and the use of smaller native globules may be advantageous.  相似文献   

19.
Based on solid fat content profiles, milk fat fractions produced by fractional crystallization procedures employing melted milk fat and milk fat dissolved in acetone were selected for incorporation into soft butter samples. Butter samples made from low melting liquid fractions or a combination of primarily low melting liquid fractions and a small amount of high melting solid fractions exhibited good spreadability at refrigerator temperature (4 degrees C) but were almost melted at room temperature (21 degrees C). Butters made with a high proportion of low melting liquid fraction, a small proportion of high melting solid, and a small proportion of very high melting solid fractions were still spreadable at refrigerator temperature and maintained their physical form at room temperature. Very high melting fractions, which provided key structural functionality in spreadable butter, were obtained from acetone fractionation. Because the use of acetone in processing may hinder or prevent commercialization of these fractions, other means to obtain very high melting fractions from milk fat should be pursued.  相似文献   

20.
Changes in chemical composition, proteolysis, lipolysis, texture, melting and sensory properties of low-fat Kashar cheese made with three different fat replacers (Simplesse D-100, Avicel Plus CM 2159 or beta-glucan) were investigated throughout ripening. The low-fat cheeses made with fat replacers were compared with full- and low-fat counterparts as controls. Reduction of fat caused increases in moisture and protein contents and decreases in moisture-in-non fat substance and yield values in low-fat cheeses. The use of fat replacers in the manufacture of low-fat Kashar cheese increased water binding capacity and improved overall quality of the cheeses. Use of fat replacer in low-fat cheese making has enhanced cheese proteolysis. All samples underwent lipolysis during ripening and low-fat cheeses with fat replacers had higher level of total free fatty acid than full- or low-fat control cheeses. Texture attributes and meltability significantly increased with addition of fat replacers. Sensory scores showed that the full-fat cheese was awarded best in all stages of ripening and low-fat variant of Kashar cheeses have inferior quality. However, fat replacers except beta-glucan improved the appearance, texture and flavour attributes of low-fat cheeses. When the fat replacers are compared, the low-fat cheese with Avicel Plus CM 2159 was highly acceptable and had sensory attributes closest to full-fat Kashar cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号