首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在水热法合成LiFePO4和HF刻蚀合成Mxene(金属碳/氮化物)的基础上,通过湿化学法制备了不同Mxene含量的Mxene/LiFePO4复合正极材料,并对其物相、形貌和电化学性能进行了研究。结果表明,Mxene纳米片在LFP颗粒中的负载,使得LiFePO4和Mxene之间通过“点到面”的导电模式在复合电极中构建高效导电网络,提高LiFePO4正极材料的电子导电性。同时,Mxene二维层状结构的特点缩短了锂离子在正极材料中的扩散路径。因此,Mxene/LiFePO4正极材料表现出良好的电化学性能,包括离子导电性和电子导电性等。其中,3%Mxene的负载,在0.1、1和5C充放电倍率下,首次放电比容量分别为159.3、136.8和100.2 m Ah·g-1,表现出良好的循环稳定性。  相似文献   

2.
为优化LiFePO4正极材料的合成与导电相包覆改性工艺,提高倍率充放电性能,综述了pH、配料温度对合成LiFePO4性能的影响,以及蔗糖、葡萄糖、柠檬酸与抗坏血酸等不同碳源,导电相原位包覆与混合包覆等改性工艺对LiFePO4导电相包覆改性性能的影响。  相似文献   

3.
为优化液相法一步制备磷酸铁锂(LiFePO4)技术,以七水合硫酸亚铁、磷酸二氢铵、一水合氢氧化锂为原料,通过添加十二烷基苯磺酸钠(SDBS)作为表面活性剂,采用液相水热法合成技术,一步合成了LiFePO4正极材料。研究了水热法一步合成技术对LiFePO4材料的组成、结构、形貌、粒度等的影响,通过电感耦合等离子体发射光谱仪(ICP-OES)、X射线衍射仪(XRD)、扫描电镜(SEM)、粒度分析仪等对材料进行了表征分析,并测试了材料的电化学性能。研究结果表明,合成得到的LiFePO4材料为微米级球形颗粒形貌的正交晶系非化学计量比的Li1.02Fe0.994PO4材料。电化学性能测试结果表明,在0.1C倍率下首次充、放电比容量分别为162.0、159.9 mA·h/g,库伦效率达到98.7%、倍率性能(以1C/0.1C保持率计)为92.3%,0.1C倍率循环100次容量保持率为96.4%,展现出良好的电化学性能。  相似文献   

4.
LiFePO4电池具有循环寿命长、安全性高、环境友好等优点,已成功应用于电子产品、电动汽车和智能电网等领域。结合LiFePO4正极材料的结构特点,综述了近年来废旧LiFePO4电极材料的预处理与回收进展,重点介绍了本课题组围绕废旧LiFePO4正极材料回收再生方面开展的研究工作,分析了不同回收方法的特点,展望其未来发展方向。  相似文献   

5.
陆晓挺 《粘接》2022,(2):46-48
以Li OH·H2O、FeSO4·7H2O和H3PO4为原料,采用CTAB辅助水热法合成LiFePO4/C复合正极材料。使用扫描电子显微镜(SEM)和充放电等测试技术研究了材料的形貌及倍率充放电性能。结果表明,添加0.32 g CTAB所得LiFePO4/C样品具有最好的电化学性能,在0.1C、0.2C、0.5C和1C倍率下,样品的首次放电比容量分别为143、133、113和94 (m A·h)/g。  相似文献   

6.
LiFePO4/C具有高温稳定性好、价格低廉、循环性能良好、环保等性能,是一种具有发展潜力的锂离子动力电池正极材料之一,因此在锂离子电池行业备受关注。但由于其电子电导率低以及锂离子扩散速率慢等缺点制约其发展。介绍了磷酸铁锂的结构、性能、充放电原理和掺杂机理,尤其对近年来LiFePO4/C材料的掺杂改性研究进行了综述。  相似文献   

7.
水热法是一种低成本、低能耗、低污染的绿色化学合成方法,在锂离子蓄电池正极粉体材料的制备方面拥有广阔的前景。LiFePO4/C复合材料因为其高安全性,有着广泛的应用,但在水热条件下不容易获得分散性好的纳米级的LiFePO4粉体材料。本文通过研究pH值、反应温度、反应时间等影响因素对水热产物性能的影响,使用水热法制备出分散性好、电化学性能优良的LiFePO4/C纳米复合材料。  相似文献   

8.
采用热处理方法将回收的正极片除去黏结剂,同时将LiFePO4氧化为Li3Fe2(PO43及Fe2O3并作为再生反应原料,分别以葡萄糖、一水合柠檬酸、聚乙二醇为还原剂,650℃高温反应16h、20h、24h碳热还原再生LiFePO4。测试结果表明,3个还原剂体系均能获得再生LiFePO4材料。以葡萄糖为还原剂,高温反应16h、20h、24h,放电比容量分别为118.49mA·h/g、118.38mA·h/g、123.77mA·h/g;100次循环后,容量保持率分别为88.40%、80.07%、72.56%。还原剂对再生材料性能影响显著,以葡萄糖为还原剂,再生材料的容量特性及循环性能均最优,一水合柠檬酸还原剂体系次之,聚乙二醇还原剂体系电化学性能最差。研究结果为大规模废旧LiFePO4材料再生提供一种新的途径。  相似文献   

9.
磷酸铁(FePO4)是锂电池正极材料磷酸铁锂(LiFePO4)的核心前驱体,FePO4形貌及硫含量对合成的LiFePO4材料性能有重要影响。为得到类球形低硫FePO4产品,在传统液相沉淀法技术基础上做了改进优化,添加十六烷基三甲基溴化铵(CTAB)作为形貌助剂提高产品球形度,添加氨水作为配体形成磷酸铁铵配合物改善结晶过程,降低产品硫含量。结果表明:所制备的FePO4产品硫质量分数低,达到2.6×10 -5,形貌为均一的微米类球形颗粒,D50=11.4 μm,振实密度达到1.22 g/cm 3,有望成为制备高压实密度LiFePO4材料的核心前驱体。  相似文献   

10.
为了改善磷酸铁锂的电化学性能,同时适于低成本的工业化生产,分别采用新型液相沉淀法和高温固相法合成LiFePO4/C复合正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)等方法对其晶体结构和表观形貌进行表征,新型液相沉淀法合成的LiFePO4粒径在100nm左右,结晶度好,室温下以0.47C和1.0C倍率放电,最高放电比容量分别达到167.91 mA·h·g-1相似文献   

11.
概述了石墨烯作为锂离子电池电极材料截体,分别从正极材料和负极材料两方面综述了石墨烯的加入对不同电极材料导电性的提高和对锂离子电池电化学性能的改善,尤其是对大电流放电性能和倍率性能的改善.  相似文献   

12.
中间相炭微球在锂离子电池负极材料的应用进展   总被引:1,自引:0,他引:1  
中间相炭微球(MCMB)具有良好锂离子扩散性、导电性和机械稳定性等优势,是目前应用广泛、综合性能优异的锂离子电池负极材料,但较低理论比容量是制约其发展的关键因素。为了获得性能优良的MCMB基锂离子电池负极材料,改性修饰和复合材料已然成为目前研发重点。笔者论述了碳结构、表界面和复合材料等微观结构设计对MCMB负极材料电化学性能的影响。从碳堆积结构类型、有序性、层间距以及球体粒径大小等方面,论述了碳结构微观设计对MCMB电化学性能的影响。发现具有乱层结构的MCMB在充放电过程中内部产生应力较小,且碳结构较稳定,具有优异循环稳定性;内部具有大量微孔或碳层间距较大的MCMB,在充放电过程中可提高锂离子在电极中的迁移速率,并提供更多的储锂空间,一般具有优良的充放电比容量和倍率性能;小粒径MCMB具有较短的锂离子迁移路径和随之增加的比表面积,通常具有较好倍率性能,伴随着可逆比容量和充放电效率的衰减。从表界面碳层改性、包覆和掺杂改性等方面,论述了表界面改性对MCMB电化学性能的影响。表面碳层修饰可增加MCMB与电解液的相容性及其比表面积,提高了与电解液的接触面积及贮锂容量,改善了锂离子电池负极材料的电化学性能;另外,MCMB表面包覆一层无定型碳,可避免其表面与电解液直接接触,减少电化学副反应的产生,提升其可逆比容量。从碳活性物质复合材料、非碳活性物质复合材料等方面,论述了复合材料微观结构设计对MCMB电化学性能的影响。碳活性物质可降低MCMB内部碳层结构的有序性,减少锂离子嵌入过程中的内部应力,提升MCMB循环稳定性。非碳活性物质诱导MCMB生成更加有序的碳层结构,提高MCMB的比表面积,从而改善MCMB表面与电解液分子的接触能力及其嵌锂性能,有利于提升MCMB负极材料可逆比容量、循环性能和倍率性能。MCMB具有高碳层间距和多缺陷位点等结构特征,有利于钠离子自由脱嵌,应用于钠离子电池时具有良好的可逆比容量、循环稳定性和倍率性能。MCMB的不规则定向层状结构经活化等处理具有较高比表面积,可应用于超级电容器电极材料。最后提出在高性能锂离子电池电极材料快速发展的需求下,从微观结构角度设计MCMB纳米复合材料将是MCMB负极材料的研究重点。  相似文献   

13.
锂及其化合物具有广泛的应用前景,锂资源需求越来越大,因此,开发能实现高储量、低品位的(浓)海水/卤水锂资源高效提取的方法具有重要意义。近年来,电化学提锂技术因其高选择性、低能耗和环境友好等特点而成为研究热点。本文针对电化学提锂技术中锂吸附电极材料的选择/制备和电极体系构建两方面的研究进展进行了归纳分析。在锂吸附电极材料的选择/制备上,基于高锂离子选择性的LiFePO4、LiMn2O4和LiNi1/3Co1/3Mn1/3O2电极被逐渐开发应用。在电极体系构建上,与具有阴离子可逆交换性能的AgCl、ZnCl2和聚吡咯对电极所构成的电极体系可避免副反应发生,能耗较低;不含其他对电极材料的“摇椅式”结构电极体系可降低电极成本,提高提锂效率。此外,指出了目前电化学提锂技术尚存在的不足,未来可从电极材料制备、提锂过程优化、装备设计三方面进行研究,以推进电化学提锂技术的发展与应用。  相似文献   

14.
《云南化工》2018,(12):6-10
尖晶石型LiMn_2O_4具有资源广、电压高、成本低、无污染、安全等优点,是具有良好发展前景的锂离子电池正极材料之一。由于在使用过程中Jahn-Teller效应、锰的溶解等引起其结构塌陷,制约了材料的应用,掺杂可以有效稳定LiMn_2O_4材料的结构、抑制容量衰减等,提高循环稳定性能。综述了Co掺杂尖晶石型LiMn_2O_4正极材料的研究进展,展望了Co掺杂尖晶石型LiMn_2O_4材料的发展前景。  相似文献   

15.
共沉淀法合成磷酸铁锂的途径概述   总被引:1,自引:0,他引:1  
共沉淀法合成LiFePO4材料的步骤简单,成本低且颗粒均匀,通过控制材料的形貌,粒径,可制备出高振实密度,高倍率性能良好的材料。随着对共沉淀法的深入研究,合成的途径也越来越多,文章介绍了不同LiFePO4材料的合成途径和各种途径的优缺点,并对共沉淀法包覆和掺杂改性的研究情况做了简单的介绍。  相似文献   

16.
锂离子电池正极材料磷酸铁锂研究进展   总被引:2,自引:1,他引:1  
与氧化钴锂(LiCoO2)、氧化镍锂(LiNiO2)相比,橄榄石结构磷酸铁锂(LiFePO4)具有安全、环保、比容量高、循环性能优异、高温特性好等优点,被誉为最具发展前景的锂离子电池正极材料。长的循环寿命、优良的高倍率放电性能、高的放电平台、大的能量密度以及良好的热稳定性能,也使得磷酸铁锂成为高功率动力电池正极的首选材料。但是,磷酸铁锂也存在电子电导率相对较低、锂离子扩散系数小、振实密度不高、低温特性不好等缺点,因而制约着它的应用和发展。从磷酸铁锂结构、性能、制备和改性等方面综述了近年来磷酸铁锂的研究进展。  相似文献   

17.
以废旧磷酸铁锂(LiFePO4)正极材料为原料,经过热处理除杂和固相补锂后,利用碳热还原反应重新获得了电化学性能优异的LiFePO4/C正极材料。测试结果表明,补加物质的量分数为10%的Li2CO3和质量分数为25%的葡萄糖可获得结晶度良好、无杂质的LiFePO4/C正极材料,且能有效弥补其可循环锂的损失。在0.1C和20C倍率下,其放电比容量分别为159.6 mA·h/g和86.9 mA·h/g,在10C倍率下,经1 000次循环后,再生LiFePO4正极材料的容量保持率为91%。说明该方法可有效处理废旧LiFePO4电池,为大规模循环再利用废旧LiFePO4正极材料提供了一条可行的途径。  相似文献   

18.
研究了钼掺杂对汽车锂电池正极材料[Mn0.58Ni0.18Co0.14]0.8-xMox(OH)2物相组成、微结构和电化学性能的影响。结果表明,x=0.005的正极材料由于具有最强的超晶格结构稳定性而表现出最强的超晶格衍射峰,而x=0.01和x=0.02的正极材料中钼酸锂杂相峰的存在会一定程度上破坏超晶格结构;不同钼掺杂的正极材料的颗粒粒径会随着Mo含量增加而不断增大;钼掺杂可以提升正极材料的锂离子键入能力而消除非晶态碳酸锂薄层的影响,但是过量钼掺杂会形成钼酸锂化合物;x=0.005的正极材料的放电比容量最高、传荷阻抗最小,充放电过程中锂离子更容易嵌入脱出,从而具有较高的高倍率放电性能,这主要与此时颗粒粒径较小以及形成了纯层状结构有助于增强锂离子导电性和动力学反应速度有关。  相似文献   

19.
随着新型信息记录与数码影像技术的快速发展,以及环保型高能动力装置应用的需要,各种高技术领域均迫切需要更高性能的锂离子二次电池。其关键技术是锂离子电池材料,如正极活性物质、负极活性物质等的制造与应用。对此,近年来在国际上已形成新的研发热潮。本文介绍一些研发团队的科研成果,以利于对其引进、消化吸收、再创新。  相似文献   

20.
掺钴镍酸锂正极材料的研究进展   总被引:1,自引:1,他引:0  
锂离子电池正极材料钴酸锂的价格昂贵,原料有限,污染性大,有毒性,以及其过充不安全性决定了它不可能在大容量和大功率电池中得到应用.掺钴镍酸锂材料具有较高的比容量,较低的成本,以及对环境无污染等优点成为替代锂离子电池正极材料钴酸锂的理想材料.综述了掺钴镍酸锂材料作为锂离子电池正极材料的制备方法、存在的问题以及解决的思路.同时对该正极材料的未来发展趋势做出了简要的预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号