首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In the field of deterministic structural optimization, the designer reduces the structural cost without taking into account uncertainties concerning materials, geometry and loading. This way, the resulting optimum solution may represent a lower level of reliability and thus a higher risk of failure. It is the objective of reliability-based design optimization (RBDO) to design structures that should be both economic and reliable. The coupling between mechanical modeling, reliability analyses and optimization methods leads to very high computational costs and weak convergence stability. Since the traditional RBDO solution is achieved by alternating between reliability and optimization iterations, the structural designers performing deterministic optimization do not consider the RBDO model as a practical tool for the design of real structures. Fortunately, a hybrid method based on simultaneous solution of the reliability and the optimization problem, has successfully reduced the computational time problem. The hybrid method allows us to satisfy a required reliability level, but the vector of variables here contains both deterministic and random variables. The hybrid RBDO problem is thus more complex than that of deterministic design. The major difficulty lies in the evaluation of the structural reliability, which is carried out by a special optimization procedure. In this paper a new methodology is presented with the aim of finding a global solution to RBDO problems without additional computing cost for the reliability evaluation. The safety factor formulation for a single limit state case has been used to efficiently reduce the computational time . This technique is fundamentally based on a study of the sensitivity of the limit state function with respect to the design variables. In order to demonstrate analytically the efficiency of this methodology, the optimality condition is then used. The efficiency of this technique is also extended to multiple limit state cases. Two numerical examples are presented at the end of the paper to demonstrate the applicability of the new methodology.  相似文献   

2.
Fluid–structure interaction phenomena are often roughly approximated when the stochastic nature of a system is considered in the design optimization process, leading to potentially significant epistemic uncertainty. In this paper, after reviewing the state-of-the-art methods in robust and reliability-based design optimization of problems undergoing fluid–structure interaction phenomena, a computational framework is presented that integrates a high-fidelity aeroelastic model into reliability-based design optimization. The design optimization problem is formulated pursuant to the reliability index and performance measure approaches. The system reliability is evaluated by a first-order reliability analysis method. The steady-state aeroelastic problem is described by a three-field formulation and solved by a staggered procedure, coupling a potentially detailed structural finite element model and a finite volume discretization of the Euler flow. The design and imperfection sensitivities are computed by evaluating the analytically derived direct and adjoint coupled aeroelastic sensitivity equations. The computational framework is verified by the optimization of three-dimensional wing structures. The lift-to-drag ratio is maximized, subject to stress constraints, by varying shape, thickness, and material properties. Uncertainties in structural parameters, including design parameters, operating conditions, and modeling uncertainties are considered. The results demonstrate the need for reliability-based optimization methods, for the design of structures undergoing fluid–structure interaction phenomena, and the applicability of the proposed framework to realistic design problems. Comparing the optimization results for different levels of uncertainty shows the importance of accounting for uncertainties in a quantitative manner.  相似文献   

3.
The adjoint method is a useful tool for finding gradients of design objectives with respect to system parameters for fluid dynamics simulations. But the utility of this method is hampered by the difficulty in writing an efficient implementation for the adjoint flow solver, especially one that scales to thousands of cores. This paper demonstrates a Python library, called adFVM, that can be used to construct an explicit unsteady flow solver and derive the corresponding discrete adjoint flow solver using automatic differentiation (AD). The library uses a two-level computational graph method for representing the structure of both solvers. The library translates this structure into a sequence of optimized kernels, significantly reducing its execution time and memory footprint. Kernels can be generated for heterogeneous architectures including distributed memory, shared memory and accelerator based systems. The library is used to write a finite volume based compressible flow solver. A wall clock time comparison between different flow solvers and adjoint flow solvers built using this library and state of the art graph based AD libraries is presented on a turbomachinery flow problem. Performance analysis of the flow solvers is carried out for CPUs and GPUs. Results of strong and weak scaling of the flow solver and its adjoint are demonstrated on subsonic flow in a periodic box.  相似文献   

4.
We perform reliability-based topology optimization by combining reliability analysis and material distribution topology design methods to design linear elastic structures subject to random inputs, such as random loadings. Both component reliability and system reliability are considered. In component reliability, we satisfy numerous probabilistic constraints which quantify the failure of different events. In system reliability, we satisfy a single probabilistic constraint which encompasses the component events. We adopt the first-order reliability method to approximate the component reliabilities and the inclusion-exclusion rule to approximate the system reliability. To solve the probabilistic optimization problem, we use a variant of the single loop method, which eliminates the need for an inner reliability analysis loop. The proposed method is amenable to implementation with existing deterministic topology optimization software, and hence suitable for practical applications. Designs obtained from component and system reliability-based topology optimization are compared to those obtained from traditional deterministic topology optimization and validated via Monte Carlo simulation.  相似文献   

5.
《Computers & Fluids》1999,28(4-5):443-480
A continuous adjoint approach for obtaining sensitivity derivatives on unstructured grids is developed and analyzed. The derivation of the costate equations is presented, and a second-order accurate discretization method is described. The relationship between the continuous formulation and a discrete formulation is explored for inviscid, as well as for viscous flow. Several limitations in a strict adherence to the continuous approach are uncovered, and an approach that circumvents these difficulties is presented. The issue of grid sensitivities, which do not arise naturally in the continuous formulation, is investigated and is observed to be of importance when dealing with geometric singularities. A method is described for modifying inviscid and viscous meshes during the design cycle to accommodate changes in the surface shape. The accuracy of the sensitivity derivatives is established by comparing with finite-difference gradients and several design examples are presented.  相似文献   

6.
A method for system reliability-based design of aircraft wing structures is presented. A wing of a light commuter aircraft designed for gust loads according to the FAA regulations is compared with one designed by system reliability optimization. It is shown that system reliability optimization has the potential of improving dramatically the safety and efficiency of new designs. The reasons for the differences between the deterministic and reliability-based designs are explained.  相似文献   

7.
Constraint aggregation makes it feasible to solve large-scale stress-constrained mass minimization problems efficiently using gradient-based optimization where the gradients are computed using adjoint methods. However, it is not always clear which constraint aggregation method is more effective, and which values to use for the aggregation parameters. In this work, the accuracy and efficiency of several aggregation methods are compared for an aircraft wing design problem. The effect of the type of aggregation function, the number of constraints, and the value of the aggregation parameter are studied. Recommendations are provided for selecting a constraint aggregation scheme that balances computational effort with the accuracy of the computed optimal design. Using the recommended aggregation method and associated parameters, a mass of within 0.5 % of the true optimal design was obtained.  相似文献   

8.
This study developed a reliability-based design optimization (RBDO) algorithm focusing on the ability of solving problems with nonlinear constraints or system reliability. In this case, a sampling technique is often adopted to evaluate the reliability analyses. However, simulation with an insufficient sample size often possesses statistical randomness resulting in an inaccurate sensitivity calculation. This may cause an unstable RBDO solution. The proposed approach used a set of deterministic variables, called auxiliary design points, to replace the random parameters. Thus, an RBDO is converted into a deterministic optimization (DO, α-problem). The DO and the analysis of finding the auxiliary design points (β-problem) are conducted iteratively until the solution converges. To maintain the stability of the RBDO solution with less computational cost, the proposed approach calculated the sensitivity of reliability (in the β-problem) with respect to the mean value of the pseudo-random parameters rather than the design variables. The stability of the proposed method was compared to that of the double-loop approach, and many factors, such as sample size, starting point and the parameters used in the optimization, were considered. The accuracy of the proposed method was confirmed using Monte Carlo simulation (MCS) with several linear and nonlinear numerical problems.  相似文献   

9.
While design optimization under uncertainty has been widely studied in the last decades, time-variant reliability-based design optimization (t-RBDO) is still an ongoing research field. The sequential and mono-level approaches show a high numerical efficiency. However, this might be to the detriment of accuracy especially in case of nonlinear performance functions and non-unique time-variant most probable failure point (MPP). A better accuracy can be obtained with the coupled approach, but this is in general computationally prohibitive. This work proposes a new t-RBDO method that overcomes the aforementioned limitations. The main idea consists in performing the time-variant reliability analysis on global kriging models that approximate the time-dependent limit state functions. These surrogates are built in an artificial augmented reliability space and an efficient adaptive enrichment strategy is developed that allows calibrating the models simultaneously. The kriging models are consequently only refined in regions that may potentially be visited by the optimizer. It is also proposed to use the same surrogates to find the deterministic design point with no extra computational cost. Using this point to launch the t-RBDO guarantees a fast convergence of the optimization algorithm. The proposed method is demonstrated on problems involving nonlinear limit state functions and non-stationary stochastic processes.  相似文献   

10.
Practical engineering design problems are inherently multiobjective, that is, require simultaneous control of several (and often conflicting) criteria. In many situations, genuine multiobjective optimization is required to acquire comprehensive information about the system of interest. The most popular solution techniques are population‐based metaheuristics, however, they are not practical for handling expensive electromagnetic (EM)‐simulation models in microwave and antenna engineering. A workaround is to use auxiliary response surface approximation surrogates but it is challenging for higher‐dimensional problems. Recently, a deterministic approach has been proposed for expedited multiobjective design optimization of expensive models in computational EMs. The method relies on variable‐fidelity EM simulations, tracking the Pareto front geometry, as well as response correction. The algorithm sequentially generates Pareto‐optimal designs using a series of constrained single‐objective optimizations. The previously obtained design is used as a starting point for the next iteration. In this work, we review this technique and its modification based on space mapping surrogates. We also propose new variations exploiting adjoint sensitivities, as well as response features, which can be attractive depending on availability of derivatives or the characteristics of the system responses that need to be handled. We also discuss several case studies involving various antenna and microwave components.  相似文献   

11.

To improve the efficiency of solving uncertainty design optimization problems, a gradient-based optimization framework is herein proposed, which combines the dimension adaptive polynomial chaos expansion (PCE) and sensitivity analysis. The dimensional adaptive PCE is used to quantify the quantities of interest (e.g., reliability, robustness metrics) and the sensitivity. The dimensional adaptive property is inherited from the dimension adaptive sparse grid, which is used to evaluate the PCE coefficients. Robustness metrics, referred to as statistical moments, and their gradients with respect to design variables are easily derived from the PCE, whereas the evaluation of the reliability and its gradient require integrations. To quantify the reliability, the framework uses the Heaviside step function to eliminate the failure domain and calculates the integration by Monte Carlo simulation with the function replaced by PCE. The PCE is further combined with Taylor’s expansion and the finite difference to compute the reliability sensitivity. Since the design vector may affect the sample set determined by dimension adaptive sparse grid, the update of the sample set is controlled by the norm variations of the design vector. The optimization framework is formed by combining reliability, robustness quantification and sensitivity analysis, and the optimization module. The accuracy and efficiency of the reliability quantification, as well as the reliability sensitivity, are verified through a mathematical example, a system of springs, and a cantilever beam. The effectiveness of the framework in solving optimization problems is validated by multiple limit states example, a truss optimization example, an airfoil optimization example, and an ONERA M6 wing optimization problem. The results demonstrate that the framework can obtain accurate solutions at the expense of a manageable computational cost.

  相似文献   

12.
The adjoint method of computing derivatives of cost and constraint functions with respect to design variables requires the calculation of certain adjoint variables. Until now, the adjoint variables have been looked upon only as some intermediate vectors needed to calculate design derivatives. In this paper, they are shown to have an important significance. They represent the sensitivity of the cost and constraint functions with respect to the loading or forcing function in the design problem. A sensitivity theorem for the adjoint variables is presented for structural, mechanical dynamic, and distributed parameter systems. These results offer some immediate practical advantages, such as a method for computing influence coefficients for structural systems, and a method for verifying (debugging) the analytical calculation of adjoint variables in development of a computer code.  相似文献   

13.
Sequential optimization and reliability assessment (SORA) is one of the most popular decoupled approaches to solve reliability-based design optimization (RBDO) problem because of its efficiency and robustness. In SORA, the double loop structure is decoupled through a serial of cycles of deterministic optimization and reliability assessment. In each cycle, the deterministic optimization and reliability assessment are performed sequentially and the boundaries of violated constraints are shifted to the feasible direction according to the reliability information obtained in the previous cycle. In this paper, based on the concept of SORA, approximate most probable target point (MPTP) and approximate probabilistic performance measure (PPM) are adopted in reliability assessment. In each cycle, the approximate MPTP needs to be reserved, which will be used to obtain new approximate MPTP in the next cycle. There is no need to evaluate the performance function in the deterministic optimization since the approximate PPM and its sensitivity are used to formulate the linear Taylor expansion of the constraint function. One example is used to illustrate that the approximate MPTP will approach the accurate MPTP with the iteration. The design variables and the approximate MPTP converge simultaneously. Numerical results of several examples indicate the proposed method is robust and more efficient than SORA and other common RBDO methods.  相似文献   

14.
The aim of this study is to develop and validate numerical methods that perform shape optimization in incompressible flows using unstructured meshes. The three-dimensional Euler equations for compressible flow are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of pressure distributions for aerodynamic configurations. Convergence acceleration techniques like multigrid and residual averaging are used along with parallel computing platforms to enable these simulations to be performed in a few minutes. This computational frame-work is used to analyze sail geometries. The adjoint equations corresponding to the “incompressible” field equations are derived along with the functional form of gradients. The evaluation of the gradients is reduced to an integral around the boundary to circumvent hurdles posed by adjoint-based gradient evaluations on unstructured meshes. The reduced gradient evaluations provide major computational savings for unstructured grids and its accuracy and use for canonical and industrial problems is a major contribution of this study. The design process is driven by a steepest-descent algorithm with a fixed step-size. The feasibility of the design process is demonstrated for three inverse design problems, two canonical problems and one industrial problem.  相似文献   

15.
樊华  山秀明  任勇  袁坚 《控制理论与应用》2011,28(11):1627-1633
给定计算机网络中的传输控制协议(transmission control protocol,TCP)流量控制算法,如何确定其稳定域,是网络设计中的一个重要问题.由于网络上控制算法受大量随机因素影响,这相当于对一个由随机微分/差分方程描述的控制系统进行稳定性分析.目前已有研究大多直接对系统方程取期望,转为讨论期望的稳定性,而简单忽略受控TCP流的随机震荡.本文意在指出这种随机震荡给稳定性带来的不可忽视的影响.本文以TCP/RED(含早期随机检测的TCP流)系统为例,首先,从系统的随机微分方程出发,通过在平衡点处线性化,将系统化为含加乘混合噪声的多维线性时不变系统.然后,给出了分别对应时间连续与离散情况的推广的TCP流量控制方程,即含多噪声源的一次时不变随机微分/差分方程组.接着,对此推广形式,推导了其协方差矩阵所满足的矩阵方程,并在此基础上,得到了协方差矩阵极限渐近稳定的充要条件以及此极限的计算公式.在工程设计中,此条件可以作为系统稳定与否的一个替代判据,方差极限公式可用来估计系统的运动范围.最后,将一般公式应用到具体例子上,展示了考虑方差稳定性后系统稳定域的变化.进一步,仿照确定性系统中的处理方法,本文结论还可推广到非线性系统及时变系统.  相似文献   

16.
Incomplete sensitivities for 3D radial turbomachinery blade optimization   总被引:1,自引:0,他引:1  
We are interested in optimal design of 3D complex geometries, such as radial turbomachines, in large control space. The calculation of the gradient of the cost function is a key point when a gradient based method is used. Finite difference method has a complexity proportional to the size of the control space and the adjoint method requires important extra coding. We propose to consider the incomplete sensitivities method for optimal design of radial turbomachinery blades. The central point of the paper is how to adapt some formulations in radial turbomachinery to the validity domain of incomplete sensitivities. Also, we discuss on how to improve the accuracy of incomplete sensitivities using reduced order models based on physical assumptions. Fine/Turbo flow solver is coupled with gradient based optimization algorithms based on CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. The approach is validated through optimization of centrifugal pumps. Finally the results are considered and discussed.  相似文献   

17.
Reliability-based design optimization of aeroelastic structures   总被引:1,自引:1,他引:0  
Aeroelastic phenomena are most often either ignored or roughly approximated when uncertainties are considered in the design optimization process of structures subject to aerodynamic loading, affecting the quality of the optimization results. Therefore, a design methodology is proposed that combines reliability-based design optimization and high-fidelity aeroelastic simulations for the analysis and design of aeroelastic structures. To account for uncertainties in design and operating conditions, a first-order reliability method (FORM) is employed to approximate the system reliability. To limit model uncertainties while accounting for the effects of given uncertainties, a high-fidelity nonlinear aeroelastic simulation method is used. The structure is modelled by a finite element method, and the aerodynamic loads are predicted by a finite volume discretization of a nonlinear Euler flow. The usefulness of the employed reliability analysis in both describing the effects of uncertainties on a particular design and as a design tool in the optimization process is illustrated. Though computationally more expensive than a deterministic optimum, due to the necessity of solving additional optimization problems for reliability analysis within each step of the broader design optimization procedure, a reliability-based optimum is shown to be an improved design. Conventional deterministic aeroelastic tailoring, which exploits the aeroelastic nature of the structure to enhance performance, is shown to often produce designs that are sensitive to variations in system or operational parameters.  相似文献   

18.
《Computers & Structures》1987,27(5):657-669
The use of second moment reliability indices is well known. Until recently, little attention has been given to the automated computation of second moments for large complex structures. In this paper, it is shown that existing deterministic software systems can be readily augmented to compute second moments, when the variability arises from uncertainty in the applied loads and displacements. Accordingly, a second moment model building process is developed from specifications of the topology and statistics of applied loads and displacements. It is also well known that sub-structuring increases computational efficiency and modelling ease when dealing with large structures: in this paper we extend the concept of sub-structuring to account for random loads. Incidence matrices are used to advantage throughout, but it is clearly shown how these can be replaced by well-known connectivity table concepts for practical implementation. As an example, a simplified analysis of a transmission tower is given, to illustrate the computation of second moments and to point the reader towards their use in reliability index computations.  相似文献   

19.
A computational method is presented for finding a sequence of optimum designs of a discrete system which exhibits limit point behaviour. Optimality conditions are derived in terms of the theory of imperfection sensitivity coefficients for the limit point load factor. Only those designs of the structures which exhibit limit point behaviour are considered as feasible designs, and the design change is conceived as generating a kind of imperfection. The efficiency of the proposed algorithm will be appreciated particularly for large structures, because incremental nonlinear analysis to find the limit point load factor needs to be carried out only once for the structure of trivial initial optimum design. The sequence of optimum designs is described by piecewise Taylor series expansions with respect to the specified limit point load factor. It is shown in the examples that the proposed method is efficient and of good accuracy for a large space truss.  相似文献   

20.
Traditional reliability-based design optimization (RBDO) generally describes uncertain variables using random distributions, while some crucial distribution parameters in practical engineering problems can only be given intervals rather than precise values due to the limited information. Then, an important probability-interval hybrid reliability problem emerged. For uncertain problems in which interval variables are included in probability distribution functions of the random parameters, this paper establishes a hybrid reliability optimization design model and the corresponding efficient decoupling algorithm, which aims to provide an effective computational tool for reliability design of many complex structures. The reliability of an inner constraint is an interval since the interval distribution parameters are involved; this paper thus establishes the probability constraint using the lower bound of the reliability degree which ensures a safety design of the structure. An approximate reliability analysis method is given to avoid the time-consuming multivariable optimization of the inner hybrid reliability analysis. By using an incremental shifting vector (ISV) technique, the nested optimization problem involved in RBDO is converted into an efficient sequential iterative process of the deterministic design optimization and the hybrid reliability analysis. Three numerical examples are presented to verify the proposed method, which include one simple problem with explicit expression and two complex practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号