首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro activity of Bay 12-8039, a new oral 8-methoxyquinolone, was compared to the activities of 11 other oral antimicrobial agents (ciprofloxacin, levofloxacin, ofloxacin, sparfloxacin, azithromycin, clarithromycin, amoxicillin clavulanate, penicillin, cefuroxime, cefpodoxime, and doxycycline) against 250 aerobic and 140 anaerobic bacteria recently isolated from animal and human bite wound infections. Bay 12-8039 was active against all aerobic isolates, both gram-positive and gram-negative isolates, at < or = 1.0 microg/ml (MICs at which 90% of isolates are inhibited [MIC90s < or = 0.25 microg/ml) and was active against most anaerobes at < or = 0.5 microg/ml; the exceptions were Fusobacterium nucleatum and other Fusobacterium species (MIC90s, > or = 4.0 microg/ml) and one strain of Prevotella loeschii (MICs, 2.0 microg/ml). In comparison, the other quinolones tested had similar in vitro activities against the aerobic strains but were less active against the anaerobes, including peptostreptococci, Porphyromonas species, and Prevotella species. The fusobacteria were relatively resistant to all the antimicrobial agents tested except penicillin G (one penicillinase-producing strain of F. nucleatum was found) and amoxicillin clavulanate.  相似文献   

2.
We have tested the in vitro activities of eight fluoroquinolones against 160 Brucella melitensis strains. The most active was sitafloxacin (MIC at which 90% of the isolates are inhibited [MIC90], 0.12 microg/ml). In decreasing order, the activities (MIC90s) of the rest of the tested fluoroquinolones were as follows: levofloxacin, 0.5 microg/ml; ciprofloxacin, trovafloxacin, and moxifloxacin, 1 microg/ml; and ofloxacin, grepafloxacin, and gatifloxacin, 2 microg/ml.  相似文献   

3.
The antibacterial activity of levofloxacin was compared with those of ofloxacin and ciprofloxacin against bacterial isolates from patients with cancer. In general, levofloxacin was as active or was twofold more active than ofloxacin and was two- to fourfold less active than ciprofloxacin against most gram-negative pathogens. Against Pseudomonas aeruginosa, ciprofloxacin was the most active agent tested (MIC for 90% of isolates tested, 1.0 microgram/ml). Overall, all three agents had similar activities against gram-positive organisms and were moderately active against methicillin-susceptible Staphylococcus aureus and coagulase-negative staphylococci, Streptococcus species, and Enterococcus species.  相似文献   

4.
PURPOSE: To investigate the development of fluoroquinolone resistance among Neisseria gonorrhoeae isolates in Japan and the frequency and patterns of mutations involving the GyrA and ParC proteins, which confer quinolone resistance to the bacteria, in isolates. MATERIALS AND METHODS: Antimicrobial susceptibilities of 145 gonococcal isolates, including 79 isolated from February 1992 through February 1993 and 66 isolated from February 1995 through February 1996, to six fluoroquinolones and several other antibiotics were compared with those of 27 isolates obtained from 1981 through 1984. To identify mutations in gyrA and parC genes of the isolates, the quinolone resistance-determining regions of the gyrA and parC genes were PCR-amplified and the PCR products were directly sequenced. RESULTS: The minimum inhibitory concentration for 90% of strains (MIC90) values of norfloxacin for the isolates from 1992 to 93 (4 microg./ml.) and 1995 to 96 (8 microg./ml.) were 16- and 32-fold, respectively, higher than those for isolates from 1981 to 84 (0.25 microg./ml.). The MIC90 values of ciprofloxacin for isolates from 1992 to 93 (0.5 microg./ml.) and 1995 to 96 (1 microg./ml.) showed increase of 8- and 16-fold, respectively, in comparison with those from 1981 to 84 (0.063 microg./ml.). The isolates from 1992 to 93 and 1995 to 96 were also less susceptible to newer fluoroquinolones including levofloxacin, sparfloxacin, DU-6859a and AM-1155, as compared with those from 1981 to 84. In 46 (67.6%) and 16 (23.5%) of the 68 gonococcal strains sequenced, GyrA and ParC mutations were identified, respectively. No ParC substitutions were identified in any isolates without co-existence of the GyrA mutation. A Ser-91 to Phe mutation, which was detected in 30 (65.2%) of the 46 isolates with GyrA mutations, was the most common GyrA mutation. Mutants with the single Ser-91 to Phe substitution in GyrA were 12-fold and at least 13-fold, respectively, less susceptible to norfloxacin and ciprofloxacin than the wild type. CONCLUSIONS: The results obtained in this study suggest that a high prevalence of gonococcal isolates with the Ser-91 to Phe mutation in GyrA has reduced the susceptibility of this organism to fluoroquinolones in Japan.  相似文献   

5.
The in-vitro antimicrobial activity of HSR-903, a new fluoroquinolone, was tested against 51 clinical Neisseria gonorrhoeae isolates in comparison with ciprofloxacin, levofloxacin and sparfloxacin. The MICs of HSR-903 for 11 isolates with alterations in both GyrA and ParC, for 19 isolates with alterations only in GyrA and for 21 isolates without alterations in either GyrA or ParC ranged from 0.03 mg/L to 1.0 mg/L (MIC90 = 0.25 mg/L), from 0.03 mg/L to 0.5 mg/L (MIC90 = 0.125 mg/L) and from < or = 0.001 mg/L to 0.008 mg/L (MIC90 = 0.004 mg/L), respectively. Levofloxacin and ciprofloxacin were the least active of the four quinolones tested, particularly against the mutant strains. Sparfloxacin was more active, but HSR-903 exhibited the most potent in-vitro activity against the clinical N. gonorrhoeae isolates, including those harbouring quinolone-resistance-associated alterations in GyrA and ParC.  相似文献   

6.
The activities of six new fluoroquinolones (moxifloxacin, grepafloxacin, gatifloxacin, trovafloxacin, clinafloxacin, and levofloxacin) compared with those of sparfloxacin and ciprofloxacin with or without reserpine (20 microg/ml) were determined for 19 Streptococcus pneumoniae isolates, 5 Haemophilus sp. isolates, and 10 Pseudomonas aeruginosa isolates with decreased susceptibility to ciprofloxacin from patients with clinically confirmed lower respiratory tract infections. Based upon the MICs at which 50% of isolates were inhibited (MIC50s) and MIC90s, the most active agent was clinafloxacin, followed by (in order of decreasing activity) trovafloxacin, moxifloxacin, gatifloxacin, sparfloxacin, and grepafloxacin. Except for clinafloxacin (and gatifloxacin and trovafloxacin for H. influenzae), none of the new agents had improved activities compared with that of ciprofloxacin for P. aeruginosa and H. influenzae. A variable reserpine effect was observed for ciprofloxacin and S. pneumoniae; however, for 9 of 19 (47%) isolates the MIC of ciprofloxacin was decreased by at least fourfold, suggesting the presence of an efflux pump contributing to the resistance phenotype. The laboratory parC (Ser79) mutant strain of S. pneumoniae required eightfold more ciprofloxacin for inhibition than the wild-type strain, but there was no change in the MIC of sparfloxacin and only a 1-dilution increase in the MICs of the other agents. For efflux pump mutant S. pneumoniae the activities of all the newer agents, except for levofloxacin, were reduced. Except for clinafloxacin, all second-step laboratory mutants required at least 2 microg of all fluoroquinolones per ml for inhibition.  相似文献   

7.
Sparfloxacin, a new orally administered fluoroquinolone, was tested against 14,182 clinical strains isolated (generally blood stream and respiratory tract cultures) at nearly 200 hospitals in the United States (USA) and Canada. Sparfloxacin activity was compared with 13 other compounds by Etest (AB BIODISK, Solna, Sweden), broth microdilution, or a standardized disk diffusion method. Using the Food and Drug Administration/product package insert MIC breakpoint for sparfloxacin susceptibility (< or = 0.5 microgram/ml), 94% of Streptococcus pneumoniae (2666 isolates) and 89% of the other streptococci (554 isolates) were susceptible. However, at < or = 1 microgram/ml (the breakpoint for all nonstreptococcal species) sparfloxacin susceptibility rates increased to 100% and 98%, respectively, for the two groups of streptococci. Only 50% and 65% of pneumococci were susceptible to ciprofloxacin (MIC90, 3 micrograms/ml) and penicillin (MIC90, 1.5 micrograms/ml), respectively. Although there were significant differences between regions in the USA in the frequency of penicillin-resistant pneumococcal strains, results indicate that the overall sparfloxacin MIC90 was uniformly at 0.5 microgram/ml. Nearly all (> or = 99%) Haemophilus species and Moraxella catarrhalis, including those harboring beta-lactamases, were susceptible to sparfloxacin, ciprofloxacin, and amoxicillin/clavulanic acid. Only cefprozil and macrolides demonstrated lower potency and spectrum against these two species. Sparfloxacin was active against oxacillin-susceptible Staphylococcus aureus (96 to 97%), Klebsiella spp. (95%), and other tested enteric bacilli (93%). Comparison between broth microdilution MIC and disk diffusion interpretive results for M. catarrhalis, Staphylococcus aureus, and the Enterobacteriaceae showed an absolute intermethod categorical agreement of > 95% using current sparfloxacin breakpoints, in contrast to those of cefpodoxime for S. aureus where a conspicuous discord (98% versus 59%) between methods was discovered. These results demonstrate that sparfloxacin possesses sufficient in vitro activity and spectrum versus pathogens that cause respiratory tract infections (indications), especially strains resistant to other drug classes such as the earlier fluoroquinolones, oral cephalosporins, macrolides, and amoxicillin/clavulanic acid. The sparfloxacin susceptibility breakpoint for streptococci may require modification (< or = 1 microgram/ml) based on the MIC population analysis presented here. A modal MIC (0.38 to 0.5 microgram/ml) was observed at the current breakpoint. Regardless, sparfloxacin inhibited 89% (nonpneumococcal Streptococcus spp.) to 100% (Haemophilus spp., M. catarrhalis) of the isolates tested with a median activity of 97% against indicated species.  相似文献   

8.
The in vitro activity of nine fluoroquinolones, enoxacin, norfloxacin, ofloxacin, ciprofloxacin, lomefloxacin, tosufloxacin, sparfloxacin, fleroxacin and levofloxacin, and two earlier quinolones, nalidixic acid and pipemidic acid, against 1,346 bacterial strains isolated clinically between 1989 and 1990, was evaluated by agar dilution method. The bacteria studied were Staphylococcus aureus (including methicillin-susceptible and -resistant strains), Staphylococcus epidermidis, Enterococcus species (including high-level gentamicin-resistant strains), Escherichia coli, Salmonella species, Proteus mirabilis, Proteus vulgaris, Morganella morganii, Klebsiella pneumoniae, Enterobacter cloacae, Serratia marcescens, Citrobacter spp., Pseudomonas aeruginosa, Pseudomonas cepacia, Acinetobacter baumannii, and Bacteroides fragilis. In contrast to the moderate to poor activity of two earlier quinolones, the fluoroquinolones acted well against most Enterobacteriaceae and A. baumannii. The minimum inhibitory concentrations for 90% of the drug strains (MIC90s) were < 1 microgram/mL against most tested species. Ciprofloxacin, tosufloxacin, sparfloxacin, and levofloxacin were more effective against multi-drug-resistant nosocomial pathogens. All fluoroquinolones assayed were very active against methicillin-susceptible S. aureus, with MIC90s < or = 1 microgram/mL. For methicillin-resistant strains, on the other hand, the MIC90s were > or = 4 micrograms/mL. There was no significant difference in fluoroquinolone susceptibility between methicillin-susceptible and -resistant S. epidermidis. Sparfloxacin, tosufloxacin, ciprofloxacin and levofloxacin were more active against enterococci. Most fluoroquinolones were relatively inactive against B. fragilis, with the exception of tosufloxacin, sparfloxacin and levofloxacin. The MIC90s of most quinolones assayed against K. pneumoniae, Citrobacter spp., E. cloacae, S. aureus and S. epidermidis were at least four-fold higher in our study. Therefore, it is important for physicians to use fluoroquinolones carefully so as to prevent or delay the emergence of resistant strains.  相似文献   

9.
Susceptibility of 230 penicillin- and erythromycin-susceptible and -resistant pneumococci to HMR 3647 (RU 66647), a new ketolide, was tested by agar dilution, and results were compared with those of erythromycin, azithromycin, clarithromycin, roxithromycin, rokitamycin, clindamycin, pristinamycin, ciprofloxacin, sparfloxacin, trimethoprim-sulfamethoxazole, doxycycline, chloramphenicol, cefuroxime, ceftriaxone, imipenem, and vancomycin. HMR 3647 was very active against all strains tested, with MICs at which 90% of the strains were inhibited (MIC90s) of 0.03 microg/ml for erythromycin-susceptible strains (MICs, < or =0.25 microg/ml) and 0.25 microg/ml for erythromycin-resistant strains (MICs, > or =1.0 microg/ml). All other macrolides yielded MIC90s of 0.03 to 0.25 and >64.0 microg/ml for erythromycin-susceptible and -resistant strains, respectively. The MICs of clindamycin for 51 of 100 (51%) erythromycin-resistant strains were < or =0.125 microg/ml. The MICs of pristinamycin for all strains were < or =1.0 microg/ml. The MIC90s of ciprofloxacin and sparfloxacin were 4.0 and 0.5 microg/ml, respectively, and were unaffected by penicillin or erythromycin susceptibility. Vancomycin and imipenem inhibited all strains at < or =1.0 microg/ml. The MICs of cefuroxime and cefotaxime rose with those of penicillin G. The MICs of trimethoprim-sulfamethoxazole, doxycycline, and chloramphenicol were variable but were generally higher in penicillin- and erythromycin-resistant strains. HMR 3647 had the best kill kinetics of all macrolides tested against 11 erythromycin-susceptible and -resistant strains, with uniform bactericidal activity (99.9% killing) after 24 h at two times the MIC and 99% killing of all strains at two times the MIC after 12 h for all strains. Pristinamycin showed more rapid killing at 2 to 6 h, with 99.9% killing of 10 of 11 strains after 24 h at two times the MIC. Other macrolides showed significant activity, relative to the MIC, against erythromycin-susceptible strains only.  相似文献   

10.
In vitro activities of 15 antimicrobial agents against 90 strains of Acinetobacter baumannii isolated from blood cultures from hospitalized patients were determined using the agar dilution method. Imipenem, ofloxacin, and ciprofloxacin had the best antimicrobial activity with minimum inhibitory concentrations (MIC50s) of 0.25 mu g/ml and MIC90s of 0.5-1 mu g/ml. beta-lactam antibiotics other than imipenem had poor activity, with MIC50s ranging from 8 to 64 mu g/ml and MIC90s from 32 to > or = 256 mu g/ml. The checkerboard titration method was used to study the effects of combination of two antimicrobial agents. Combinations of ceftazidime, aztreonam, imipenem, or ciprofloxacin with amikacin showed either synergistic effects or partial synergistic effects for 40.9%-86.4% of 22 tested strains. The best in vitro activity was observed with the combination of imipenem and amikacin. No antagonistic effects were observed with the combination of imipenem and amikacin. Synergistic effects were confirmed by time-kill curve studies. In conclusion, imipenem, ofloxacin, and ciprofloxacin were the three most active agents against human blood isolates of A. baumannii. The combination of a beta-lactam or ciprofloxacin with amikacin was synergistic for some of the isolates.  相似文献   

11.
The more active L-isomer, levofloxacin, of the racemic ofloxacin mixture has been under development for therapeutic use. In this study, we evaluated the activity of ofloxacin, levofloxacin, and D-ofloxacin against the fastidious respiratory tract pathogens Haemophilus influenzae and Moraxella catarrhalis. Levofloxacin was two-fold more active than ofloxacin against H. influenzae (MIC90, 0.015 microgram/ml), and D-ofloxacin was least active (MIC90, 1 microgram/ml). For M. catarrhalis the MIC90 values were 0.03 microgram/ml, 0.06 microgram/ml, and 2 micrograms/ml for levofloxacin, ofloxacin, and D-ofloxacin, respectively. For disk diffusion susceptibility testing, Chocolate Mueller-Hinton agar (CMH) was considered preferable to Haemophilus test medium (HTM) because it supported the growth of all of 105 H. influenzae strains whereas five strains failed to grow on HTM. In addition, the margins of the zones of inhibition were more distinct on CMH and the Haemophilus species strains with elevated fluoroquinolone MICs were readily distinguished. The superior growth on CMH was reflected in a reduction of inhibition zone diameters of 2-3 mm relative to the inhibition zone diameters on HTM. The previously proposed interpretive criteria for the 5 microgram disk diffusion susceptibility test (susceptible at > or = 17 mm) results in complete categorical agreement with the reference microdilution broth method for M. catarrhalis on Mueller Hinton agar and for H. influenzae on HTM and CMH. However, the minimum diameter of the zone of inhibition recorded for a member of the dominant population of either species was considerably greater (25 mm) than 17 mm on any of the media tested.  相似文献   

12.
To investigate emerging fluoroquinolone resistance in Neisseria gonorrhoeae isolated in Japan, we compared the in vitro antimicrobial susceptibilities of 79 gonococcal isolates from 1992 through 1993 to 14 fluoroquinolones and 14 other antibiotics with those of 27 isolates from between 1981 and 1984. The MICs at which 90% of the isolates were inhibited by nine fluroquinolones, including norfloxacin, enoxacin, ofloxacin, ciprofloxacin, tosufloxacin, lomefloxacin, fleroxacin, levofloxacin, and sparfloxacin, for isolates from 1992 to 1993 were 8- or 16-fold higher than those for isolates from 1981 to 1984. Furthermore, the MICs at which 90% of the isolates were inhibited by five fluroquinolones, including OPC-17116, T-3761, DU-6859a, AM-1155, and Q-35, that have recently been synthesized but have not yet been introduced for clinical use in Japan for isolates from 1992 to 1993 were also 2- to 16-fold higher than those for isolates from 1981 to 1984. The gonococcal isolates from 1992 to 1993 showed no significant decreases in susceptibility to beta-lactams, tetracyclines, macrolides, and spectinomycin, compared with those for isolates from 1981 to 1984. Our data indicate that the incidence of gonococcal strains with decreased susceptibilities to fluoroquinolones is increasing in Japan.  相似文献   

13.
The in vitro activity of levofloxacin was compared to the activities of ofloxacin, ciprofloxacin, ampicillin-sulbactam (2:1), cefoxitin, and metronidazole for a selected group of anaerobes (n = 175) isolated from skin and soft tissue infections by using the National Committee for Clinical Laboratory Standards-approved Wadsworth method. Ampicillin-sulbactam and cefoxitin inhibited 99% of the strains of this select group, levofloxacin and ofloxacin inhibited 73 and 50%, respectively, at 2 microg/ml, and ciprofloxacin inhibited 51% at 1 microg/ml. The geometric mean MIC of levofloxacin was lower than those of ofloxacin and ciprofloxacin for every group except Veillonella.  相似文献   

14.
The in vitro activity of the new fluoroquinolone CP-99,219 [7-(3-azabicyclo[3.1.0]hexyl)naphthyridone] was compared with those of four other quinolones against 541 gram-negative, 283 gram-positive, and 70 anaerobic bacterial isolates. CP-99,219 inhibited 90% of many isolates in the family Enterobacteriaceae at a concentration of < or = 0.25 micrograms/ml (range, < 0.008 to 1 microgram/ml), an activity comparable to those of tosufloxacin and sparfloxacin and two times greater than that of temafloxacin. Ninety percent of the Proteus vulgaris, Providencia rettgeri, Providencia stuartii, and Serratia marcescens isolates were inhibited by 0.5 to 2 micrograms of CP-99,219 per ml. CP-99,219 inhibited 90% of the Pseudomonas aeruginosa and Haemophilus influenzae isolates at 1 and 0.015 micrograms/ml, respectively. The compound inhibited methicillin-susceptible Staphylococcus aureus at 0.06 micrograms/ml, whereas a ciprofloxacin concentration of 1 microgram/ml was required to inhibit these organisms. CP-99,219 inhibited 90% of methicillin-resistant S. aureus isolates at a concentration of < or = 4 micrograms/ml, while ciprofloxacin and temafloxacin had MICs against these isolates of > 16 micrograms/ml. Streptococci were inhibited by < or = 0.25 micrograms/ml, an activity comparable to that of tosufloxacin. CP-99,219 was eight times more active than ciprofloxacin against Streptococcus pneumoniae. Bacteroides species were inhibited by CP-99,219 at a concentration of 2 micrograms/ml, whereas inhibition of these species required 4- and 16-microgram/ml concentrations of tosufloxacin and ciprofloxacin, respectively. The MBCs of CP-99,219 ranged from two to four times the MICs, and inoculum size had a minimal effect on MIC. CP-99,219 was active against P. aeruginosa at pH 5.5, with only a fourfold increase in MIC compared with values obtained at pH 7.5. The addition of up to 9 mM Mg(2+) increased the MIC range from 0.03 to 0.06 microgram/ml to 0.12 to 0.5 microgram/ml. In view of its excellent in vitro activity against both gram-positive and gram-negative bacteria, CP-99,219 merits further study to determine it's clinical pharmacologic properties and potential for therapeutic use.  相似文献   

15.
BACKGROUND: Infections caused by Streptococcus pneumoniae continue to be a significant cause of mortality and morbidity in humans. Diseases caused by multi-resistant pneumococci are increasing rapidly worldwide. The fluoroquinolones have been widely used clinically to treat infectious diseases. The results of a study here on the five fluoroquinolones susceptibilities of S. pneumoniae are reported from the Taichung Veterans General Hospital. METHODS: Minimum inhibitory concentrations (MICs) of five quinolones (enoxacin, norfloxacin, ofloxacin, levofloxacin and ciprofloxacin) were determined for 106 strains of S. pneumoniae. All MICs were determined by the agar dilution method utilizing Mueller-Hinton agar supplemented with 5% sheep blood. RESULTS: MIC90 of levofloxacin was 1 microgram/ ml, and was unaffected by penicillin-susceptibility. MIC90 of ofloxacin and that of ciprofloxacin were 2 and 4 micrograms/ml, respectively, with 90.6% sensitive to ofloxacin. MIC90 of enoxacin and that of norfloxacin were higher than other compounds. CONCLUSIONS: The in vitro activity of levofloxacin is twice that of ofloxacin, 4-fold of ciprofloxacin, 16-fold of norfloxacin, and 64-fold of enoxacin. MICs of these five quinolones were unaffected by penicillin-susceptibility. The antibacterial activity of levofloxacin was better than that of ofloxacin and ciprofloxacin, norfloxacin, or enoxacin against S. pneumoniae.  相似文献   

16.
A total of 435 clinical isolates of anaerobes were tested with a broth microdilution method to determine the activity of BAY y 3118 compared with those of other agents against anaerobic bacteria. All strains of Bacteroides capillosus, Prevotella spp., Porphyromonas spp., Fusobacterium spp., Clostridium spp., Eubacterium spp., Peptostreptococcus spp., and Veillonella parvula were susceptible (MICs of < or = 2 micrograms/ml) to BAY y 3118. Against the 315 strains of the Bacteroides fragilis group, five strains required elevated MICs (> or = 4 micrograms/ml) of BAY y 3118. Only imipenem and metronidazole were active against all anaerobes. Overall, BAY y 3118 was more active than ciprofloxacin, sparfloxacin, piperacillin, cefotaxime, and clindamycin against the test isolates.  相似文献   

17.
Alternate mutations in the grlA and gyrA genes were observed through the first- to fourth-step mutants which were obtained from four Staphylococcus aureus strains by sequential selection with several fluoroquinolones. The increases in the MICs of gatifloxacin accompanying those mutational steps suggest that primary targets of gatifloxacin in the wild type and the first-, second-, and third-step mutants are wild-type topoisomerase IV (topo IV), wild-type DNA gyrase, singly mutated topo IV, and singly mutated DNA gyrase, respectively. Gatifloxacin had activity equal to that of tosufloxacin and activity more potent than those of norfloxacin, ofloxacin, ciprofloxacin, and sparfloxacin against the second-step mutants (grlA gyrA; gatifloxacin MIC range, 1.56 to 3.13 microg/ml) and had the most potent activity against the third-step mutants (grlA gyrA grlA; gatifloxacin MIC range, 1.56 to 6.25 microg/ml), suggesting that gatifloxacin possesses the most potent inhibitory activity against singly mutated topo IV and singly mutated DNA gyrase among the quinolones tested. Moreover, gatifloxacin selected resistant mutants from wild-type and the second-step mutants at a low frequency. Gatifloxacin possessed potent activity (MIC, 0.39 microg/ml) against the NorA-overproducing strain S. aureus NY12, the norA transformant, which was slightly lower than that against the parent strain SA113. The increases in the MICs of the quinolones tested against NY12 were negatively correlated with the hydrophobicity of the quinolones (correlation coefficient, -0.93; P < 0.01). Therefore, this slight decrease in the activity of gatifloxacin is attributable to its high hydrophobicity. Those properties of gatifloxacin likely explain its good activity against quinolone-resistant clinical isolates of S. aureus harboring the grlA, gyrA, and/or norA mutations.  相似文献   

18.
The in vitro activities of eight quinolones against 115 coryneform bacteria (20 Corynebacterium jeikeium, 15 Corynebacterium minutissimum, 15 Corynebacterium striatum, 25 Corynebacterium urealyticum, 10 Corynebacterium xerosis, 10 Corynebacterium group ANF-1, 10 Corynebacterium group 12, and 10 Listeria monocytogenes) were determined. The MICs of ciprofloxacin, ofloxacin, and sparfloxacin for 90% of C. jeikeium, C. urealyticum, and C. xerosis isolates tested were > 16 micrograms/ml. Those of BAY Y 3118 and clinafloxacin against these species were 0.5 and 1 to 2 micrograms/ml, respectively. The MICs for 90% of all 115 strains tested were 0.5 microgram/ml for BAY Y 3118, 1 microgram/ml for clinafloxacin, 2 micrograms/ml for E-5068, 4 micrograms/ml for E-5065, and > 16 micrograms/ml for ciprofloxacin, ofloxacin, sparfloxacin, and E-4868.  相似文献   

19.
Twenty-nine Aspergillus isolates and 25 Fusarium isolates underwent in vitro antifungal susceptibility testing by a broth macrodilution procedure adapted from the National Committee for Clinical Laboratory Standards guidelines. The MIC50s of both voriconazole and amphotericin B were 0.5 microg/ml and 1 microg/ml against species of Aspergillus and Fusarium, respectively, while the MIC90s of both agents were 1 and 2 microg/ml. Voriconazole was more active in vitro than amphotericin B: the geometric mean MICs of voriconazole and amphotericin B against Aspergillus spp. were 0.36 microg/ml and 0.64 microg/ml, respectively. Voriconazole also demonstrated fungicidal activity against Aspergillus spp., with 86% (24/29) of isolates exhibiting minimum lethal concentrations of < or = 4 microg/ml.  相似文献   

20.
Therapy with ofloxacin, ciprofloxacin, and lomefloxacin (alone or in combination with clindamycin) and therapy with sparfloxacin, clinafloxacin, and temafloxacin alone were given to mice with subcutaneous abscesses. The abscesses were caused by two Bacteroides fragilis isolates, one of which was susceptible and one of which was resistant to ofloxacin, ciprofloxacin, and lomefloxacin, alone or in combination with Escherichia coli. The abscesses were examined 5 days after inoculation. Numbers of B. fragilis organisms reached log10 10.2 to 11.8 per abscess, and numbers of E. coli organisms reached log10 10.6 to 11.8 per abscess. All of the quinolones reduced the number of susceptible B. fragilis isolates (log10 3.6 to 6.9) and E. coli isolates (log10 5.7 to 6.8). However, ciprofloxacin and lomefloxacin failed to reduce the number of resistant B. fragilis organisms in single-organism or mixed infections. The addition of clindamycin to either ofloxacin, ciprofloxacin, or lomefloxacin reduced the numbers of both susceptible and resistant B. fragilis organisms (log10 3.8 to 7.8). In contrast, sparfloxacin, clinafloxacin, and temafloxacin were effective as single therapy in eradicating B. fragilis resistant to ofloxacin, ciprofloxacin, and lomefloxacin. These in vivo data confirm the in vitro activity of these quinolones and suggest that although ofloxacin, ciprofloxacin, and lomefloxacin are occasionally effective as single agents in eradicating mixed infection by susceptible strains of B. fragilis and E. coli, addition of an agent with activity against anaerobic organisms will ensure their efficacy. Quinolones with good efficacy against B. fragilis may be effective as single-agent therapy of mixed infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号