首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was performed in order to develop a sustained-release pellet formulation containing venlafaxine hydrochloride (VEN), an extremely water-soluble drug, prepared by combination of wax matrices and double-layer coatings. The influence of both double-layer polymeric coats and wax matrices on the release of VEN from sustained-release pellets was investigated. The pellets were prepared by wet mass extrusion spheronization methods and then coated with a fluidized bed coater. For the pellets coated with Eudragit® NE30D alone, a coating level of nearly 40% was required to pass the dissolution test compared with commercial product, and it was accompanied by an unacceptable lag time. The application of an alcohol-soluble polymeric subcoat, Opadry® I, was added before the Eudragit® NE30D coating process, which resulted in a marked delay in drug release. However, a faster release was observed for the formulation coated with a high subcoat level (10%) at the end of the dissolution test. A further delay in drug release was observed when a wax matrix, octadecanol, was added to the core pellet formulation. The kinetics of drug release changed from the Higuchi model to a zero order model and the predominant mechanism controlling drug release changed from diffusion to dissolution upon increasing the amount of octadecanol within the matrix pellets. In addition, the drug release was markedly influenced by the drug to matrix ratio. In conclusion, the 40% drug-loaded core pellets with double-layer coatings (8% Opadry® I and 12% Eudragit® NE30D) and 20% octadecanol matrix produced the desired profile for once-daily sustained release compared with the commercial product, and these pellets remained stable during storage.  相似文献   

2.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit® NE30D alone (F1) or blend of Eudragit® RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit® NE30D and a blend of Eudragit® RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit® RL30D/RS30D polymers with proper features as coating materials produced a longer Tmax, a lower Cmax and a little higher bioavailability compared to F1 (coated with Eudragit® NE30D alone). The Cmax, Tmax and relative bioavailability of F1 and F2 coated pellets were 15.16 μg/ml, 4.17 h, 97.69% and 11.41 μg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

3.
Abstract

The influence of various additives, namely, PEG, mannitol, and HPMCP 50 incorporated with Eudragit® L30D on drug release from pellets was investigated. Cores of a water soluble drug were prepared by the powder layering technique using the CF Granulator (CF 360) and coating was accomplished utilizing the Glatt GPCG3 machine. Drug release from pellets coated with Eudragit® L30D was found to be influenced by the type and the level of the additive incorporated with the copolymer. At pH 1.5, PEG, regardless of the molecular weight, did not have any significant effect on drug release. At pH 5.5, however, PEG significantly decreased drug release from coated pellets, and the decrease was more pronounced as the molecular weight of PEG was increased. Release of the drug from pellets coated with Eudragit® L30D containing mannitol was found to be dependent on mannitol concentration at pH 1.5, 3.5 and 4.5 but independent of mannitol concentration at pH 5.5. The release of drug through Eudragit® L30D:HPMCP 50 films was found to be dependent on the ratio of the polymers.  相似文献   

4.
Purpose: The purpose of this study is to develop an oral suspension of clindamycin resin complex for the potential use in pediatrics.

Methods: Several types of Ion exchange resins were screened for their binding efficiency with clindamycin. In order to develop a suspension formulation, several thickening agents, surfactants, sweeting, and flavoring agents were evaluated for their influence on the release of clindamycin from resinate. Rheological studies were also conducted to select the optimum amounts of the suspending agents. The release profiles of clindamycin in SGF and SIF were also evaluated from freshly prepared suspension and from suspension formulation after storage for 1 month at 25?°C and 40?°C. Clindamycin bitterness threshold was determined based on volunteers’ evaluation, and taste evaluation was conducted in 12 adult volunteers who evaluated the taste of the optimized suspension against clindamycin solution.

Results: Among all resins tested, Amberlite IRP 69 showed the highest binding efficiency to clindamycin. Several excipients were selected into the suspension formulation based on no or minimum influence on the release of clindamycin from the resinate complex. Moreover, xanthan gum was selected as the optimal suspending agent for the suspension. Clindamycin release profiles in SGF or SIF showed 90% release within 30?min from freshly prepared sample. Clindamycin exhibited good stability profiles at 25?°C and 40?°C over 1 month storage. The mean bitterness threshold of clindamycin was 12.5?μg/ml, and taste evaluation study in adults showed sustainable taste improvement for suspension over clindamycin solution.

Conclusion: Clindamycin/resin complexation has shown to be an efficient method to mask the taste of clindamycin and was developed into a suspension formulation that can be used in pediatrics.  相似文献   

5.
Abstract

A method was developed for coating non-uniform granular particles In a uniform and controlled manner. Specific surface area was calculated based on the sieve-analysis data of uncoated theophylline granules which was used as the model compound. Theophylline granules were coated with different amounts of Eudraglt® L30D utilizing a Wurster coating apparatus. The in-vitro dissolution rate profiles of several batches were determined. Standard dissolution curves were established based on the amount of Eudraglt® L30D applied per unit area of theophylline granules. Using these curves as a standard, a prediction of dissolution rate could be made based on the knowledge of specific surface area of the theophylline granules and the amount of coating applied.  相似文献   

6.
The purpose of this research was to develop an orally disintegrating tablet (ODT) dosage form containing taste-masked beads of clindamycin HCl. Several formulation strategies were evaluated and a taste-masked ODT of clindamycin HCl was prepared without the use of a waxy cushioning agent. Clindamycin HCl (ca. 46% w/w) was coated onto microcrystalline cellulose beads (Cellets® 200) followed by the addition of a taste-masking layer of amino methacrylate copolymer, NF (Eudragit EPO® (EPO)) coating suspension. The efficiency of both the drug coating process and the taste-masking polymer coating process, as well as the taste masking ODTs was determined using potency and drug release analysis. Magnesium stearate was found to be advantageous over talc in improving the efficiency of the EPO coating suspension. A response surface methodology using a Box–Behnken design for the tablets revealed compression force and levels of both disintegrant and talc to be the main factors influencing the ODT properties. Blending of talc to the EPO-coated beads was found to be the most critical factor in ensuring that ODTs disintegrate within 30?s. The optimized ODTs formulation also showed negligible (<0.5%) drug release in 1?min using phosphate buffer, pH 6.8 (which is analogous to the residence time and pH in the oral cavity). By carefully adjusting the levels of coating polymers, the amounts of disintegrant and talc, as well as the compression force, robust ODTs can be obtained to improve pediatric and geriatric patient compliance for clindamycin oral dosage forms.  相似文献   

7.
ABSTRACT

The objective of this study was to investigate the influence of two proteins, albumin and type B gelatin, on the physical aging of EUDRAGIT® RS 30 D and RL 30 D coated theophylline pellets. The physicomechanical properties of sprayed films, thermal properties of cast films, influence of proteins on the zeta potential and particle size of the dispersion, and the release of proteins from cast films under simulated dissolution conditions were investigated. The release rate of theophylline decreased significantly over time from pellets coated with an acrylic dispersion containing 10% albumin when there was no acidification of the acrylic dispersion; however, when pellets were coated with an acidified EUDRAGIT®/albumin dispersion, the theophylline release rate was stable for dosage forms stored in the absence of humidity. The drug release rate was faster for pellets coated with acrylic dispersions containing 10% gelatin compared to the albumin–containing formulations. When sprayed films were stored at 40°C/75% RH, the water vapor permeability decreased significantly for both EUDRAGIT® films and those containing EUDRAGIT® and albumin; however, there was no significant change in this parameter when 10% gelatin was present. Albumin was released from the acrylic films when the pH of the dissolution media was below the isoelectric point of the protein while no quantitative release of gelatin was observed in pH 1.2 or 7.4 media. The effect of gelatin to prevent the decrease in drug release rate was due to stabilization in water vapor permeability of the film. Acidification of the polymeric dispersion resulted in electrostatic repulsive forces between albumin and the acrylic polymer, which stabilized the drug release rate when the dosage forms were stored in aluminum induction sealed containers at both 40°C/75% RH and 25°C/60% RH.  相似文献   

8.
The purpose of this work was to taste mask highly bitter active, Ornidazole by means of particle coating. The aim of the work was further extended into formulating these coated particles into an acceptable oral dosage form such as dry suspension. Ornidazole drug particles were coated using Kollicoat® Smartseal 30 D as a taste masking polymer. Kollicoat® Smartseal 30 D is a methyl methacrylate – diethylaminoethyl methacrylate copolymer (6:4). Successful taste masking was achieved for Ornidazole with both top spray and bottom spray techniques using fluid bed processor. Effective taste masking was achieved at a weight gain of 50% w/w and 40% w/w for bottom and top spray techniques respectively without having a significant effect on the release pattern. A taste masked dry suspension was prepared with around 80% w/w coated Ornidazole particles and pH was maintained around 7–8. The suspension prepared with these coated Ornidazole particles, which were maintained in the alkaline pH was found to be stable for 7 days without affecting the taste. The bitter taste intensity was evaluated using volunteers by comparison of test samples with standard solutions containing Ornidazole at various concentrations. Thus, Kollicoat® Smartseal 30 D was found to be an effective polymer for taste masking of a bitter active like Ornidazole. The formulation development of taste masked dry suspensions was only possible due to unique properties possessed by Kollicoat® Smartseal 30 D.  相似文献   

9.
Abstract

Objective: Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab).

Materials and methods: Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900?mL 0.1?N HCl medium, 900?mL pH 6.8 phosphate buffer or 900?mL pH 4.5 acetate buffer at 37?±?0.2?°C as dissolution medium.

Results: Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media.

Discussion: Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles.

Conclusion: Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.  相似文献   

10.
Spherical granules of theophylline, microcrystalline cellulose and lactose are prepared in a high speed granulator using an original method. Successively, the fraction of granules selected is coated with Eudragit RS 30D in a fluid bed coating machine using the bottom spray system and the wurster column. Finally, these granules are compressed into tablets of different hardnesses.

Dissolution studies reveal a zero order release of theophylline from the coated granules. After compression, the kinetics is modified but the tablets remain efficient to control the theophylline release during 8 hours.  相似文献   

11.
The objective of this study was to obtain detailed information on the mechanism of drug release from mixed-film of pectin-chitosan/Eudragit® RS. Pellets (710–840 μm in diameter) containing 60% theophylline and 40% microcrystalline cellulose were prepared by extrusion-spheronization method. Eudragit® L100-55 enteric coating capsules included film-coated pellets of theophylline in theoretical coating weight gains of 10, 15, and 20%, with pectin-chitosan complex contents of 5, 10, 15, and 20% for each level of weight gain were prepared and subjected to in vitro drug release. Drug release from this system showed a bimodal release profile characteristic with the drug release enhancement, being triggered (burst release) in the colonic medium. The reason for burst drug release may be due to the enzymatic degradation of pectin via pectinolytic enzymes in the simulated colonic medium. The mechanism of drug release from each formulation was evaluated in the terms of zero-order, first-order, Higuchi and Korsmeyer-Peppas models. It was observed that none of the enteric coating capsules showed any drug release in the simulated gastric medium (phase I). The analysis of release profiles showed that zero-order kinetics was found as the better fitting model for all formulations in the simulated small intestine (phase II) and it could be due to the pectin-chitosan swelling and subsequent formation of aqueous channels. In the colonic medium (phase III), due to degradation of pectin and its leaching from the mixed-film, there was a modification in drug release kinetics from swelling-controlled at phase II to anomalous at phase III. It also was found that both zero-order and Higuchi models contributed in colonic drug release from most of the formulations.  相似文献   

12.
ABSTRACT

Controlled release tablets containing a poorly water-soluble drug, indomethacin (IDM), acrylic polymers (Eudragit® RD 100, Eudragit® L 100, or Eudragit® S 100), and triethyl citrate (TEC) were prepared by hot-melt extrusion. The physicochemical and IDM release properties of the controlled release hot-melt extrudates were investigated. Indomethacin (IDM) was found to be both thermally and chemically stable following hot-melt extrusion processing and displayed a plasticizing effect on Eudragit® RL PO as demonstrated by a decrease in the glass transition temperatures of the polymer. The inclusion of either Pluronic® F68, Eudragit® L 100, or Eudragit® S 100 in the powder blend containing Eudragit® RD 100 prior to processing increased the rate of release of the IDM from the extrudates. An increase in the media pH and a decrease in the granule particle size also increased the rate of release of IDM. The inclusion of TEC up to 8% in the granule formulation or compressing the granules into tablets had no significant effect on the drug release rate. Indomethacin (IDM) was transformed from a crystalline Form I into an amorphous form in the Eudragit® RD 100 granules following hot-melt extrusion. The thermal processing facilitated the formation of a solid solution with a continuous matrix structure that was shown to control drug diffusion from the extrudates.  相似文献   

13.
Abstract

Spherical granules of theophylline with microcrystalline cellulose and lactose were prepared in a high-speed granulator. An original experimental design based on the philosophy of Taguchi was applied to optimize the yield of the produced granules. Successively, the optimized pellets were coated with an ethylcellulose pseudolatex preparation (Surelease®) in a fluid bed coating machine using a bottom spray noule and a Wurster® column. Finally, these granules were c ompressed into tablets of different hardnesses. The chosen statistical approach proved efficient not only to find the optimal operating conditions for granulation but it also appeared to define the characteristics of a process that was robust and no sensitive to noise factors. Dissolution studies revealed a zero-order release of theophylline from the coated granules, but after the compression step, the ethyl cellulose film was damaged and the drug release was immediate.  相似文献   

14.
Abstract

The preparation of a sustained release dosage form for pseudoephedrine hydrochloride was evaluated. Beadlets (PS) containing pseudoephedrine hydrochloride were prepared by spraying a slurry of pseudoephedrine hydrochloride, Eudragit® S-100, dibutyl sebacate and alcohol onto non-pariel seeds via the Wurster column process. The oven-dried PS beadlets were coated with different levels of Eudragit® RS (poorly water permeable) and Eudragit® S-100 (enteric resin). In-vitro dissolution  相似文献   

15.
Abstract

The objective of this work was to study the dissolution process of sodium diclofenac granules coated with a polymeric suspension of Eudragit L-30D-55® by fluidized bed. Methacrylic acid-methylmetacrylate copolymer, also known as Eudragit, has been used as a pH sensitive coating material to protect drug substances prior to delivery to the human intestines. The sodium diclofenac granules were prepared by wet granulation technology using microcrystalline cellulose (MICROCEL), sodium diclofenac, and polivinilpirrolidone K-30. The granules coating operation was carried out in a fluidized bed with top spraying by a double-fluid nozzle. The dissolutions studies of the coated granules were performed in triplicate in a dissolution test station according to “in vitro testing requirements” Method A (paddle method, rotation of 100 RPM and temperature fixed at 37°C). The dissolution mediums were 0.1N HCl solution and a pH 6.8 phosphate buffer solution, following the pH change dissolution procedure specified in USP for enteric-coated articles: 2 h of exposure to 750 mL of 0.1N HCl followed by testing in 1000 mL of pH 6.8 phosphate buffer, the pH being adjusted with 250 mL of 0.2 M tribasic sodium phosphate solution. The released amount of sodium diclofenac was periodically determined by UV spectrophotometry at wavelength of 276 nm, using a spectrophotometer UV-VIS HP 8453. The coated product showed gastric resistance properties confirming the feasibility of the fluidized bed for applying enteric coating in granules and pharmaceutical powders.  相似文献   

16.
Abstract

The influences of aqueous polymeric subcoats and pellet composition on the release properties of a highly water-soluble drug, chlorpheniramine maleate (CPM), from enteric coated pellets were investigated. Three different aqueous polymeric subcoats, Eudragit® RD 100, Eudragit® RS 30D, and Opadry® AMB, were applied to 10% w/w CPM-loaded pellets that were then enteric coated with Eudragit® L 30D-55. Observed drug release from the coated pellets in acidic media correlated with water vapor transmission rates derived for the subcoat films. The influence of pellet composition on retarding the release of CPM from enteric coated pellets in 0.1 N HCl was investigated. The rate of drug release was greatest for pellets prepared with lactose, microcrystalline cellulose, or dibasic calcium phosphate compared with pellets formulated with citric acid and microcrystalline cellulose. Citric acid reduced the pellet micro-environmental pH, decreasing the amount of drug leakage in 0.1 N HCL during the first 2 hr of dissolution. Polymer flocculation was observed when CPM was added to the Eudragit L 30D-55 dispersion. An adsorption isotherm was generated for mixtures of CPM and the polymer and the data were found to fit the Freundlich model for adsorption. Adsorption of CPM to the polymer decreased with the addition of citric acid to the drug-polymer mixtures.  相似文献   

17.
The objective of this study was to evaluate xanthan gum as a matrix former for the preparation of sustained release tablets. Preliminary experiments indicated that a fine particle sue of xanthan gum produced the slowest and most reproducible release profiles. Based on single surface experiments and tablet erosion studies, it was concluded that release of a soluble drug (chlorpheniramine maleate) and an insoluble drug (theophylline) from tablets containing low concentraions of xanthan gum was mainly via diffusion and erosion, respectively. Drug release from tablets containing xanthan gum was slightly faster in acidic media due to more rapid initial surface erosion than at higher pH. After hydration of the gum, drug release was essentially pH-independent. The amount released was directly proportional to the loading dose of drug and inversely proportional to gum concentration in tablets. Release profiles of chlorpheniramine maleate and theophylline remained unchanged after three months storage of the tablets at 40°C/80% RH and 40°C. Model tablets containing 5% xanthan gum exhibited release profiles similar to tablets containing 15% hydroxypropyl methylcellulose.  相似文献   

18.
The purpose was to investigate the effectiveness of an ethylcellulose (EC) bead matrix and different film-coating polymers in delaying drug release from compacted multiparticulate systems. Formulations containing theophylline or cimetidine granulated with Eudragit® RS 30D were developed and beads were produced by extrusion–spheronization. Drug beads were coated using 15% wt/wt Surelease® or Eudragit® NE 30D and were evaluated for true density, particle size, and sphericity. Lipid-based placebo beads and drug beads were blended together and compacted on an instrumented Stokes B2 rotary tablet press. Although placebo beads were significantly less spherical, their true density of 1.21 g/cm3 and size of 855 μm were quite close to Surelease®-coated drug beads. Curing improved the crushing strength and friability values for theophylline tablets containing Surelease®-coated beads; 5.7 ± 1.0 kP and 0.26 ± 0.07%, respectively. Dissolution profiles showed that the EC matrix only provided 3 h of drug release. Although tablets containing Surelease®-coated theophylline beads released drug fastest overall (t44.2% = 8 h), profiles showed that coating damage was still minimal. Size and density differences indicated a minimal segregation potential during tableting for blends containing Surelease®-coated drug beads. Although modified release profiles >8 h were achievable in tablets for both drugs using either coating polymer, Surelease®-coated theophylline beads released drug fastest overall. This is likely because of the increased solubility of theophylline and the intrinsic properties of the Surelease® films. Furthermore, the lipid-based placebos served as effective cushioning agents by protecting coating integrity of drug beads under a number of different conditions while tableting.  相似文献   

19.
ABSTRACT

Slow-release matrix granules were manufactured in the fluidized bed using an aqueous dispersion of quaternary poly(meth)acrylates (Eudragit® RS 30 D) as binder for granulation. A factorial design was carried out to investigate the influence of the following parameters, spraying rate, applied polymer amount, and inlet air temperature, on various granule properties. Prerequisites for a slow release of the model drug theophylline are high spraying rate, high amount of polymer, and low inlet air temperature. No considerable decrease of the drug release rate can be achieved without a subsequent curing of the dry granules. A clear correlation exists between the moisture content of the fluidized bed, indicated by the terminal moisture content (TMC), and the mean dissolution time for 80% of the drug (MDT80).  相似文献   

20.
Abstract

The objective of this research project was to characterize the drug release profiles, physicochemical properties and drug–polymer interaction of melt-extruded granules consisting of chlorpheniramine maleate (CPM) and Eudragit® FS. Melt extrusion was performed using a single screw extruder at a processing temperature of 65–75?°C. The melt extrudate was milled, blended with lactose monohydrate and then filled into hard gelatin capsules. Each capsule contained 300?mg CPM granules. The release of CPM was determined with the United States Pharmacopeia dissolution apparatus II using a three-stage dissolution medium testing in order to simulate the pH conditions of the gastrointestinal tract. Pore structure, thermal properties and surface morphologies of CPM granules were studied using mercury and helium pycnometer, differential scanning calorimeter and scanning electron microscope. Sustained release of CPM over 10?h was achieved. The release of CPM was a function of drug loading and the size of the milled granules. The complexation between CPM and Eudragit® FS as the result of counterion condensation was observed, and the interaction was characterized using membrane dialysis and H1 NMR techniques. In both 0.1?N HCl and phosphate buffer pH 6.8, CPM was released via a diffusion mechanism and the release rate was controlled by the pore structure of the melt-extruded granules. In phosphate buffer pH 7.4, CPM release was controlled by the low pH micro-environment created by CPM, the pore structure of the granules and the in situ complexation between CPM and Eudragit® FS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号