首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The aim of this work was to prepare L-DOPA loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles by a modified water-in-oil-in-water (W1/O/W2) emulsification solvent evaporation method. A central composite design was applied for optimization of the formulation parameters and for studying the effects of three independent variables: PLGA concentration, polyvinyl alcohol (PVA) concentration and organic solvent removal rate on the particle size and the entrapment efficiency (response variables). Second-order models were obtained to adequately describe the influence of the independent variables on the selected responses. The analysis of variance showed that the three independent variables had significant effects (p < 0.05) on the responses. The experimental results were in perfect accordance with the predictions estimated by the models. Using the desirability approach and overlay contour plots, the optimal preparation area can be highlighted. It was found that the optimum values of the responses could be obtained at higher concentration of PLGA (5%, w/v) and PVA (6%, w/v); and faster organic solvent removal rate (700 rpm). The corresponding particle size was 256.2 nm and the entrapment efficiency was 62.19%. FTIR investigation confirmed that the L-DOPA and PLGA polymer maintained its backbone structure in the fabrication of nanoparticles. The scanning electron microscopic images of nanoparticles showed that all particles had spherical shape with porous outer skin. The results suggested that PLGA nanoparticles might represent a promising formulation for brain delivery of L-DOPA. The preparation of L-DOPA loaded PLGA nanoparticles can be optimized by the central composite design.  相似文献   

2.
We have prepared polymeric drug nanoparticles by oil in water (O/W) emulsion solvent evaporation method. We used acetone as solvent for polymer and water as non-solvent. The purpose of this study is to use the emulsion solvent evaporation method in order to prepare nanoparticles and to investigate the effects of the various processing parameters to the characteristics of the nanoparticles. In this research, we use two different forms of acrylic polymers, Eudragit E100 and Eudragit RS. It was found that the size of the nanoparticles depends on different parameters such as the polymer concentration in the organic solvent, surfactant concentration and the volume ratio of oil and water phases. The morphology structure is investigated by transmission electron microscope (TEM). TEM images confirmed that the nanoparticles produced were spherical in shape and the successfully prepared nanoparticles with size 80?nm. The size distribution is measured by laser dynamic light scattering. The size distribution of the nanoparticles was found in the range from 50 to 150?nm. Investigation of Fourier transform infrared spectroscopy indicated the absence of the interactions between the drug and polymer. X-ray diffraction patterns of nanoparticles containing ketoprofen, Eudragit E100 and Eudragit RS showed the amorphous structure.  相似文献   

3.
Fe3O4 based magnetic polymer nanoparticles (MPNPs) are densely studied for several decades. These Fe3O4 based MPNPs can be used in wastewater treatment and biological field such as magnetic resonance imaging contrast agents, hyperthermia therapy and protein separation. The Fe3O4 based MPNPs are attractive because they combine the advantages of magnetism and polymers together. In order to obtain the practical application in the above mentioned areas, the bare Fe3O4 needs to be functionalised with different kinds of molecules like organic small molecules and polymers and some inorganic molecules like silica, metals and carbon. In this review, the chemical preparation methods, different modification methods and various applications of the Fe3O4 based MPNPs are introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号