首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The effects of heat treatment on PVA films containing water soluble plasticizers were investigated. Propylene glycol, glycerol and polyethylene glycol were used as plasticizers. There was synergism between heat treatment and the presence of plasticizers in enhancing the water resistance of PVA films. In the absence of heat treatment, however, the plasticizers increased the aqueous solubility of PVA films. The plasticized films further showed a lower permeability to propranolol HC1 compared to the unplasticized films following heat treatment.  相似文献   

2.
ABSTRACT

The effect of triethyl citrate (TEC) and different molecular weights and concentrations of polyethylene glycol (PEG), in addition to the effect of different water-soluble polymers and dispersions at different levels, hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), carbomer 940, polyvinyl alcohol (PVA), ethyl cellulose (EC), on the mechanical and thermal properties, drug permeability, and porosity of free shellac films were investigated. Shellac films were cast from aqueous solutions, and their mechanical properties were studied by tensile test. Thermal analyses were performed using differential scanning calorimetry (DSC).

The results showed that the addition of plasticizer caused a decrease in both elastic modulus and glass transition temperature (Tg) and an increase in elongation at break of free shellac films. This effect was related to the concentrations of plasticizers. Different molecular weights of PEGs have different plasticization mechanisms.

Moreover, the incorporation of different amounts of HPMC, MC, or carbomer in free shellac films caused an increase in the flexibility, decrease in Tg, and a marked increase in drug permeability of free shellac films, whereas the addition of PVA caused a decrease in flexibility and drug permeability and an increase in Tg. Addition of EC resulted in a slight decrease of the elasticity and a small decrease in drug permeability. However it does not show a considerable effect on the Tg. In addition, it was found that the drug permeability is directly related to the mechanical properties and Tg of shellac films.  相似文献   

3.
The effect of triethyl citrate (TEC) and different molecular weights and concentrations of polyethylene glycol (PEG), in addition to the effect of different water-soluble polymers and dispersions at different levels, hydroxypropyl methylcellulose (HPMC), methylcellulose (MC), carbomer 940, polyvinyl alcohol (PVA), ethyl cellulose (EC), on the mechanical and thermal properties, drug permeability, and porosity of free shellac films were investigated. Shellac films were cast from aqueous solutions, and their mechanical properties were studied by tensile test. Thermal analyses were performed using differential scanning calorimetry (DSC).

The results showed that the addition of plasticizer caused a decrease in both elastic modulus and glass transition temperature (Tg) and an increase in elongation at break of free shellac films. This effect was related to the concentrations of plasticizers. Different molecular weights of PEGs have different plasticization mechanisms.

Moreover, the incorporation of different amounts of HPMC, MC, or carbomer in free shellac films caused an increase in the flexibility, decrease in Tg, and a marked increase in drug permeability of free shellac films, whereas the addition of PVA caused a decrease in flexibility and drug permeability and an increase in Tg. Addition of EC resulted in a slight decrease of the elasticity and a small decrease in drug permeability. However it does not show a considerable effect on the Tg. In addition, it was found that the drug permeability is directly related to the mechanical properties and Tg of shellac films.  相似文献   

4.
合成了可UV固化的聚氨酯丙烯酸酯,并利用傅立叶红外光谱对其合成过程及固化涂膜进行了表征.利用差示扫描量热分析不同固化程度下涂膜微观结构的变化,并对其硬度、柔韧性、耐磨及耐水性能进行了测试.  相似文献   

5.
目的利用不同水溶性及脂溶性抗氧化剂对聚乙烯醇(PVA)进行改性,以期在改善复合膜综合性能的基础上,重点提升其抗氧化能力。方法以茶多酚、柠檬酸、BHT和维生素E为变量,甘油/聚乙烯醇为基底,研究不同水溶性及脂溶性抗氧化剂对复合膜形貌、力学性能、透光性、耐水性能及抗氧化能力的影响。结果加入适量的抗氧化剂后,薄膜各项性能均有所增强。其中,茶多酚/聚乙烯醇复合膜的力学性能最优,茶多酚(1.5%)/PVA复合膜的拉伸强度可达47.85 MPa,断裂伸长率为375.69%。该复合膜显著提高了紫外线的吸收率,同时73.93%的自由基清除率为研究薄膜中最高。结论采用茶多酚改性聚乙烯醇,不仅可提升复合膜的包装强度,增强其耐水性能,更能增强抗氧化能力,为食品保鲜提供了良好思路。  相似文献   

6.
聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究   总被引:11,自引:0,他引:11  
以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)为原料,通过溶胶-凝胶(Sol-Gel)方法,制备出不同二氧化硅含量的聚乙烯醇/二氧化硅(PVA/SiO2)共混均质膜。通过热重分析(TGA)、示差扫描量热法(DSC)和动态力学分析(DMA)研究了共混膜的热性能。结果表明,与PVA膜相比,PVA/SiO2共混膜具有更高的热稳定性,随SiO2含量的增大,共混膜的分解温度升高,玻璃化温度也略有提高。以水为溶剂,测定了共混膜的耐溶剂性能。与PVA膜相比,PVA/SiO2共混膜的耐溶剂性能有显著的提高。  相似文献   

7.
The electrospinning of polyvinyl alcohol (PVA) was performed with maleic anhydride (MA) as a cross linker to fabricate slightly soluble nanofiber membrane. The solubility, morphology and thermal behavior of electrospun PVA and PVA/MA membranes were characterized by water durability test, scanning electron microscope (SEM) and differential scanning calorimeter (DSC), respectively. Water durability test demonstrated that 8% PVA/MA (20/1, mole/mole) membrane had the least average mass loss and standard deviation. SEM images showed that fibers in PVA/MA membrane had a larger average diameter compared to those in PVA membrane. DSC investigated that crystal structure was formed in PVA/MA membrane. The results show that rapid evaporation of water and high electric field during electrospinning process may promote crosslinking of PVA and MA.  相似文献   

8.
以球形纳米纤维素晶体(NCC)作增强相、柠檬酸作交联剂对聚乙烯醇(PVA)进行改性,制备了PVA/NCC纳米复合薄膜和柠檬酸交联PVA/NCC纳米复合薄膜。通过热重分析、差热分析、吸水实验和拉伸实验考察了NCC的添加和柠檬酸的交联对薄膜热性能、耐水性和力学性能的影响。结果表明,与纯PVA薄膜相比,改性PVA薄膜的起始分解温度升高、熔融/结晶峰向高温方向移动、吸水率降低;只用NCC或柠檬酸对PVA改性时,所得PVA/NCC纳米复合薄膜、柠檬酸交联PVA薄膜的力学性能均对环境湿度敏感;同时用NCC(m(NCC)/m(PVA)=6/100)和柠檬酸(m(柠檬酸)/m(PVA)=3/100或m(柠檬酸)/m(PVA)=4.5/100)对PVA改性时,所得柠檬酸交联PVA/NCC纳米复合薄膜的力学性能不随环境湿度变化。  相似文献   

9.
Abstract

Polyvinyl alcohol (PVA) films containing 10% w/w of a model drug, sulphathiazole, were cast from aqueous solutions and subjected to heat treatment at specific temperatures for known periods of time. Heat treatment at temperatures above the Tg of the PVA films slowed down the rate of drug release from the films. Increasing the temperature of heat treatment from 120°C to 160°C further decreased the rate of drug release. On the other hand, if the heat treatment were conducted at a temperature below the Tg e.g. at 80°C, there were insignificant differences between the release profile of sulphathiazole from heat-treated films and that from untreated films. The duration of heat treatment affected the rate of drug release to a smaller extent compared to the temperature of heat treatment. These results correlated with the heat induced changes in the morphology of, and in the extent of water uptake by the PVA films.  相似文献   

10.
复配增塑剂对聚乙烯醇薄膜性能的影响   总被引:1,自引:0,他引:1  
以尿素/三乙醇胺为复配增塑剂,利用溶液共混法制备了改性PVA薄膜,通过FT-IR研究了尿素/三乙醇胺复配增塑剂与PVA间的相互作用,采用XRD,TGA,DSC表征了增塑改性PVA的结晶性能和热性能,同时分析了复配增塑剂的加入对PVA薄膜力学性能、透光性能、耐水性能的影响。实验结果表明,复配增塑剂的加入破坏了PVA分子中的氢键作用,降低了PVA的结晶度和熔点温度,热分解温度基本不变;随着复配增塑剂含量的增加,增塑改性后的PVA薄膜抗拉强度下降、断裂伸长率增加,透光性增加,溶胀率下降,溶失率增加。  相似文献   

11.
完全醇解型PVA包装薄膜的耐水性研究   总被引:2,自引:2,他引:0  
目的在保持聚乙烯醇(PVA)良好的水溶性、成膜性及生物降解性的基础上,提高聚乙烯醇薄膜的耐水性。方法采用完全醇解型PVA制备水溶性PVA包装薄膜,对薄膜进行化学交联处理、热处理,以及化学交联处理及热处理相结合等3种方式,研究其对薄膜结构和性能的影响。结果经饱和硼酸溶液化学交联处理后,PVA薄膜的吸湿率明显降低,大致可以确定硼酸浴液的最佳温度为70℃,最佳浸渍时间为5 min;经热处理后的PVA薄膜耐水性得到改善。结论经2种方式综合处理的PVA薄膜,既发生了化学交联又产生了结晶结构,其分子内亲水性羟基数量减少的同时,分子链的排列也更加规整有序,与单一处理方式相比,耐水性能得到较大改善。  相似文献   

12.
聚乙烯醇接枝聚乙烯氯化铵(PV-g-PVAC)与聚乙烯醇接枝聚丙烯酸钠(PVA-g-SPA)自组装PVA基聚离子复合物(PPIC).利用红外光谱(IR)对PPIC的结构进行表征.PPIC膜的SEM照片表面呈现有序孔状结构,有利于水的吸收.采用差示扫描量热法(DSC)测定了PPIC的耐热性.PPIC水溶液pH=5(反离子...  相似文献   

13.
采用流延法制备了载Ag改性桑枝韧皮纤维素/聚乙烯醇(Ag-T-CMC/PVA)复合膜,并利用XRD、SEM、DSC等分析测试方法研究了该复合膜的结构和性能。结果表明:随着Ag-T-CMC含量增加,Ag-T-CMC/PVA复合膜的力学性能、耐水性及抗菌性能均有提高。当Ag-T-CMC与PVA质量比为2%时,力学性能达到最佳,拉伸强度提高了3.4%。SEM分析表明:Ag-T-CMC均匀分散于Ag-T-CMC/PVA复合膜中,表现出良好的相容性;随着Ag-T-CMC含量的增加,断层逐渐变得光滑平面,在Ag-T-CMC与PVA质量比为2%时,断层最光滑。吸水性能测试表明:Ag-T-CMC能明显降低Ag-T-CMC/PVA复合膜的吸水性。抑菌性能测试表明:Ag-T-CMC/PVA复合膜对大肠杆菌和金黄色葡萄球菌有一定的抑菌效果,且随着Ag-T-CMC含量的增大,抑菌圈直径变大,抑菌效果增强。   相似文献   

14.
作为可生物降解型的聚乙烯醇薄膜,其环保特性已得到了全世界的广泛承认,但是由于聚乙烯醇分子中含有大量的亲水性基团,导致成膜的耐水性差,这很大程度上限制了它的推广和应用。通过采用戊二醛、尿素对聚乙烯醇进行缩醛交联,并通过添加不同种类的增塑剂(丙三醇、PEG-400、MgCl2)破坏PVA的氢键作用,降低其结晶度,从而达到增塑改性效果,最后通过红外光谱FTIR、热重TG分析、物理机械性能以及接触角来鉴定物质的结构以及对其性能进行表征。结果表明:通过戊二醛、尿素与PVA羟基缩醛交联反应可以提高PVA成膜的耐水性能和热稳定性能,丙三醇、PEG-400、MgCl2等可以提高PVA的断裂伸长率和拉伸强度,当涂膜中交联剂戊二醛4%、尿素0.5%,增塑剂丙三醇4%、PEG-400为6%、MgCl2为2%时,成膜的机械性能最优,断裂伸长率达136.7%,拉伸强度达3.48MPa。  相似文献   

15.
The aim of this work was to study the effect of the hydrolysis degree (HD) and the concentration (CPVA) of two types of poly(vinyl alcohol) (PVA) and of the type (glycerol and sorbitol) and the concentration (CP) of plasticizers on some physical properties of biodegradable films based on blends of gelatin and PVA using a response-surface methodology. The films were prepared with a film forming solutions (FFS) with 2 g of macromolecules (gelatin+PVA)/100 g de FFS. The responses analyzed were the mechanical properties, the solubility, the moisture content, the color difference and the opacity. The linear model was statistically significant and predictive for puncture force and deformation, elongation at break, solubility in water, moisture content and opacity. The CPVA affected strongly the elongation at break of the films. The interaction of the HD and the CP affected this property. Moreover, the puncture force was affected slightly by the CPVA. Concerning the solubility in water, the reduction of the HD increased it and this effect was greater for high CPVA values. In general, the most important effect observed in the physical properties of the films was that of the plasticizer type and concentration. The PVA hydrolysis degree and concentration have an important effect only for the elongation at break, puncture deformation and solubility in water.  相似文献   

16.
Polyvinyl alcohol (PVA) and egg albumin are water-soluble, biocompatible and biodegradable polymers and have been widely employed in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of poly (vinyl alcohol) and egg albumin were prepared by cyclic freezing/thawing processes of aqueous solutions containing PVA and egg albumin. The FTIR analysis of prepared cryogels indicated that egg albumin was successfully introduced into the formed hydrogel possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups present in PVA and egg albumin. The gels were also characterized thermally and morphologically by DSC and SEM-techniques, respectively. The prepared so called ‘cryogels’ were evaluated for their water uptake potential and influence of various factors such as chemical architecture of the spongy hydrogels, pH and temperature of the swelling bath were investigated on the degree of water sorption by the cryogels. The effect of salt solution and various simulated biological fluids on the swelling of cryogel was also studied. The in vitro biocompatibility of the prepared cryogel was also judged by methods such as protein (BSA) adsorption, blood clot formation and percentage hemolysis measurements.  相似文献   

17.
In this study ZnO nanoparticles were prepared by the Pechini method from a polyester by reacting citric acid with ethylene glycol in which the metal ions are dissolved, and incorporated into blend films of chitosan (CS) and poly (vinyl alcohol) (PVA) with different concentrations of polyoxyethylene sorbitan monooleate, Tween 80 (T80). These films were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), swelling degree, degradation of films in Hank's solution and the mechanical properties. Besides these characterizations, the antibacterial activity of the films was tested, and the films containing ZnO nanoparticles showed antibacterial activity toward the bacterial species Staphylococcus aureus. The observed antibacterial activity in the composite films prepared in this work suggests that they may be used as hydrophilic wound and burn dressings.  相似文献   

18.
海藻酸钠/聚乙烯醇共混膜的制备及表征   总被引:1,自引:0,他引:1  
用溶液共混法制备海藻酸钠/聚乙烯醇(SA/PVA)共混膜,并对其进行了IR、DSC表征和吸水率、透气率、力学性能等测定.结果表明,在这种由两种可生物降解的高聚物共混而成的共混膜中,PVA与SA分子链间有一定的相互作用,相容性好;共混膜有较高的抗水性和较好的综合力学性能.  相似文献   

19.
Hydroxypropylcellulose (HPC) films containing drugs or hydrophilic or hydrophobic plasticizers were prepared by a hot melt extrusion process. Polyethylene glycol 8000 (PEG 8000) 2%, triethyl citrate (TEC) 2%, acetyltributyl citrate (ATBC) 2%, and polyethylene glycol 400 (PEG 400) 1% were the plasticizing agents studied. In addition, either hydrocortisone (HC) 1% or chlorpheniramine maleate (CPM) 1% was incorporated into the films as a model drug. The physical-mechanical properties of the films that were investigated included tensile strength (TS), percentage elongation (%E), and Young's modulus (YM). Differential scanning calorimetry (DSC) was utilized to determine glass transition temperatures (Tg' s). These parameters were studied as a function of time and temperature. The glass transition temperatures initially decreased with the inclusion of the drugs and plasticizers. However, after 6 months aging, films containing PEG 400 and HC showed a marked increase in Tg. The films containing PEG 400 showed physical-mechanical instability in all parameters studied. All extruded films exhibited a marked decrease in TS in contrast to a large increase in %E when testing was performed perpendicular to flow versus in the direction of flow. In addition, a consistent film of HPC in the absence of drugs or plasticizers could not be extruded due to the excessive stress on the equipment. Although the theoretical percentage of CPM on aging remained fairly constant over the processing temperature ranges in this study, the HC levels remaining in the extruded films during storage were a function of time and temperature.  相似文献   

20.
Polyvinyl alcohol (PVA) films containing 10% w/w of a model drug, sulphathiazole, were cast from aqueous solutions and subjected to heat treatment at specific temperatures for known periods of time. Heat treatment at temperatures above the Tg of the PVA films slowed down the rate of drug release from the films. Increasing the temperature of heat treatment from 120°C to 160°C further decreased the rate of drug release. On the other hand, if the heat treatment were conducted at a temperature below the Tg e.g. at 80°C, there were insignificant differences between the release profile of sulphathiazole from heat-treated films and that from untreated films. The duration of heat treatment affected the rate of drug release to a smaller extent compared to the temperature of heat treatment. These results correlated with the heat induced changes in the morphology of, and in the extent of water uptake by the PVA films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号