首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用光学金相显微镜、X射线衍射、拉伸试验、扫描电镜、透射电镜等技术,研究Cu含量对Al-Cu-Mg合金微观组织及力学性能的影响。结果表明:铸态Al-Cu-Mg合金中存在明显的树枝晶,沿晶界分布着大量块状S(Al_2CuMg)和θ(Al_2Cu)析出相。均匀化退火处理后,非平衡低熔点相基本熔入基体,晶间组织分布趋于均匀。大应变轧制变形后,3种Al-Cu-Mg合金中均得到典型的纤维状组织,合金中的第二相主要为S(Al_2CuMg)相、θ(Al_2Cu)相和T(Al_(20)Cu_2Mn_3)相,沿晶界呈连续而均匀分布。经时效处理后,3种Al-Cu-Mg合金均表现出优异的综合力学性能,Cu含量为2%(质量分数)时,Al-Cu-Mg合金的抗拉强度、屈服强度和伸长率分别为507 MPa、430 MPa和10.3%;合金的力学性能随着Cu含量的增加呈递增趋势,当Cu含量为4.5%时,Al-Cu-Mg合金的抗拉强度、屈服强度和伸长率分别为644 MPa、547 MPa和10.5%。  相似文献   

2.
采用金相显微镜(OM)、差热分析(DSC)、X射线衍射(XRD)、拉伸试验机等,研究了固溶时效处理对大应变轧制2524铝合金板材显微组织及力学性能的影响。研究表明,轧制态2524铝合金中轧制面组织呈纤维状且存在大量的Al_2Cu和Al_2CuMg相。合金在455~495℃之间,固溶处理温度越高,时间越长,粗大的第二相溶解越充分。2524铝合金经495℃×60min固溶处理后,析出相基本溶解,2524铝合金的抗拉强度,屈服强度和伸长率分别为412.6 MPa、350.7 MPa和17.9%,合金经505℃固溶处理后,出现过烧组织特征,力学性能降低。合金经时效处理后强化相均匀析出,合金性能得到强化。合金经190℃×6h时效处理后,2524铝合金的抗拉强度、屈服强度和伸长率分别为464.6MPa、395MPa和22%。  相似文献   

3.
采用光学金相显微镜、X射线衍射、拉伸试验机、SEM断口分析等,研究了Zr含量对Al-Cu-Mg合金均匀化处理微观组织与力学性能的影响规律。结果表明,铸态Al-Cu-Mg-Zr合金中存在明显的枝晶偏析,沿晶界分布着大量块状Al_2Cu Mg和Al_2Cu相,以及少量Al-----_----7Cu_2Fe相。与铸态合金相比,经485℃×10 h均匀化处理后,Al-Cu-Mg-Zr合金的抗拉强度与伸长率均有较大幅度增加,且0强度和伸长率,其抗拉强度由157.56 MPa增大到319 MPa,增幅为102%,伸长率由0增大到7.55%,合金表现出良好的综合力学性能,这主要是由于均匀化处理使铸态组织中的粗大相回溶入基体中。断口为韧窝和准解理混合断裂特征。  相似文献   

4.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了Zn对铸态Mg-9Gd-4Y-x Zn-0.5Zr(x=0,0.5 1.0,1.5,2.0)合金组织和力学性能的影响。结果表明:铸态Mg-9Gd-4Y-0.5Zr合金显微组织由基体α-Mg和共晶相Mg5(Gd,Y)组成。加入Zn元素后,合金组织中出现Mg5(Gd,Y,Zn)相和Mg12Zn(Gd,Y)相,分布于晶界或晶内。当Zn含量为1%时,合金组织得到明显细化,第二相分布均匀,力学性能显著提升。此时,合金抗拉强度和屈服强度到达最大值,分别为209.72 MPa和172.69 MPa。随着Zn含量进一步增加,合金组织粗化,第二相含量迅速增加且沿晶界逐渐呈网状分布并逐渐向晶内深入,合金强度也明显降低。  相似文献   

5.
采用光学显微镜、扫描电镜、透射电镜和万能拉伸试验机等研究了铸态、固溶态和时效态Mg-6Nd-2Al合金的显微组织及力学性能。结果表明,铸态合金的组织由α-Mg基体、不规则条状Mg_(12)Nd相、针片状Al_(11)Nd_3相和颗粒状Al_2Nd相组成。经固溶处理后,合金中第二相的数量明显减少,晶界处的Mg_(12)Nd相溶解,针片状Al_(11)Nd_3相出现断裂和球化现象,转变为Al_2Nd相。经时效处理后,合金内部有大量纳米尺度的β″相析出,力学性能明显提高;与铸态合金相比,时效态合金的抗拉强度由141.5 MPa提升至189.5 MPa,屈服强度由104.4 MPa提升至121.9 MPa,该合金具有较好的热处理强化效果。  相似文献   

6.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

7.
研究了水冷铜模铸造对添加Mn和Zr元素的6061铝合金的微观组织及力学性能的影响。利用金相显微镜、扫描电镜和EDS能谱,分析合金的微观组织;结合X射线衍射分析及Vegard定律,估算铸态及均匀化处理后Mg、Si和Mn元素在合金中的固溶度;通过拉伸试验测试含Mn和Zr的6061铝合金力学性能。结果表明:水冷铜模亚快速凝固铸造降低了溶质元素Mg、Si、Mn在铸态合金中的偏析,减少了合金的均匀化处理时间;Mn和Zr元素的添加,使晶粒细化明显;水冷铜模使铸态析出相由骨骼状和条状的β铁相转变为颗粒状的α铁相,均匀化处理后主要以颗粒状的α-Al_8(MnFe)_2Si和α-Al_8(MnFeCr)_2Si相存在。采用水冷铜模铸造的含Mn和Zr的6061铝合金,其拉伸性能得到明显改善。经均匀化处理后其抗拉强度达到286 MPa、屈服强度127 MPa,延伸率17.84%。  相似文献   

8.
采用光学显微镜(OM)、差热分析(DSC)、X射线衍射、拉伸试验机、SEM断口分析等研究均匀化处理工艺对铸态Al-4.5Cu-1.5Mg-0.6Mn-0.2Ti-0.5Zr合金显微组织及力学性能的影响。结果表明:Al-4.5Cu-1.5Mg-0.6Mn-0.2Ti-0.5Zr合金铸态组织中存在严重的枝晶偏析,沿晶界分布着大量块状析出相,主要为Al2Cu及Al2Cu Mg相,还有少量Al7Cu2Fe相;合金经485℃×10 h均匀化处理后,组织中的非平衡低熔点组织基本溶入基体,晶粒得到明显的细化,晶间组织分布均匀,断口为韧窝和准解理型的混合断裂特征,合金表现出较好的力学性能,硬度、抗拉强度、伸长率分别为146 HV、317.7 MPa、8.67%。  相似文献   

9.
铸态及挤压态Mg-11Li-3Al-xZr合金的组织及性能   总被引:1,自引:0,他引:1  
通过真空感应熔炼及挤压变形制备了铸态及挤压态的Mg-11Li-3Al-xZr(x=0、0.1)合金,采用OM、XRD、SEM、EDS观察并分析了合金的显微组织,测试了不同状态合金的力学性能。结果表明,Mg-11Li-3Al-xZr合金均含有β-Li、α-Mg、θ-MgLi_2Al、AlLi相,Mg-11Li-3Al-0.1Zr合金中还存在Al_3Zr相。铸态合金晶粒粗大,挤压变形过程中发生动态再结晶使晶粒细化。Zr的添加能明显细化晶粒,尤其在挤压后Mg-11Li-3Al-0.1Zr合金晶粒尺寸仅为Mg-11Li-3Al合金的1/4左右。铸态时两种合金力学性能相近,Mg-11Li-3Al-0.1Zr合金伸长率略低;挤压变形后两种合金伸长率较高,而且由于加工硬化和细晶强化作用,强度明显提高,Mg-11Li-3Al-0.1Zr合金的强度达到194 MPa,较铸态提高32.8%。  相似文献   

10.
采用光学显微镜、X射线衍射仪(XRD)、扫描电镜(SEM)和力学试验等研究了Mg-10Er-2Zn-0.6Zr合金的组织和力学性能。结果表明,铸态Mg-10Er-2Zn-0.6Zr合金主要由树枝状α-Mg基体以及分布于枝晶间的长周期结构相和Mg_3(Er,Zn)相组成;合金经过500℃×20h固溶后,铸态合金中LPSO相和Mg_3(Er,Zn)相消失,而在晶界处生成WMg_3Er_2Zn_3相;随后炉冷至400℃,α-Mg晶内析出呈平行排列且贯穿晶粒的条纹状LPSO相结构。拉伸条件下,固溶态合金具有最佳的力学性能,其屈服强度、抗拉强度和伸长率分别为117 MPa、227 MPa、17.9%。与拉伸性能相比,压缩条件下合金表现出更优的力学性能。  相似文献   

11.
采用低压铸造制备了Mg-xZn-3Y-0.7Zr合金,利用金相显微镜、扫描电镜、能谱分析仪、热分析仪等设备,研究了Zn含量对合金微观组织的影响,并通过热处理工艺来改善合金微观组织中的第二相分布,从而提高合金的力学性能。结果表明,Mg-5Zn-3Y-0.7Zr合金主要含有α-Mg和W-Mg3Zn3Y2相,其中W相呈网状在晶界上分布;当Zn含量为8%时,铸态组织中树枝晶明显增多,并且出现了I-Mg3Zn6Y相;热处理后I相消失,网状分布的W相被打断,在三角晶界处仍有鱼骨状片层共晶组织。Mg-5Zn-3Y-0.7Zr合金铸态抗拉强度、屈服强度和伸长率分别为223.8MPa、124.9MPa和7.3%,经过T6处理后提升效果不明显,而Mg-8Zn-3Y-0.7Zr合金在铸态时力学性能较差,经过T6处理后其抗拉强度、屈服强度和伸长率为263.3 MPa、207.9 MPa和2.2%。Mg-5Zn-3Y-0.7Zr合金的断裂机制为准解理断裂,断口处有发生塑性变形而出现的撕裂棱。Mg-8Zn-3Y-0.7Zr合金的断裂机制主要为解理断裂,并没有发现韧窝。  相似文献   

12.
《热处理》2020,(4)
采用金相显微镜(OM)、场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)以及背散射电子衍射(EBSD),研究了含0.2%Zr和0.6%Sc的Al-Si-Mg-Cu-Zr-Sc合金中初生Al_3 (Sc,Zr)相的形成及其细化合金铸态组织的机制。结果表明:Al-Si-Mg-Cu-Zr-Sc合金熔体在凝固过程中析出了初生Al_3(Sc,Zr)相,由于其与基体的结构和生长取向相近,作为非均匀形核的核心使合金组织显著细化,并使合金铸态组织从粗大的树枝晶转变为细小的等轴晶。初生Al_3(Sc,Zr)相以α-Al为核心生长,形成了"α-Al+Al_3(Sc,Zr)+α-Al+Al_3(Sc,Zr)+…"的偶数层共晶结构。  相似文献   

13.
采用熔炼铸造法制备了添加0~2%Zn(质量分数)的Mg-10Gd-3Sm-0.5Zr合金,通过X射线衍射、扫描电镜和拉伸性能测试等分析了Zn对铸态Mg-10Gd-3Sm-0.5Zr合金组织与性能的影响。结果表明:铸态Mg-10Gd-3Sm-0.5Zr合金由粗大枝晶α-Mg基体和晶界处半连续分布稀土相Mg41(Sm,Gd)5和Mg5Gd(Sm)组成,加入Zn元素后,在合金中产生了新相(Mg,Zn)3(Sm,Gd)1;铸态Mg-10Gd-3Sm-xZn-0.5Zr合金室温拉伸力学性能随着Zn元素含量的增加先升高后降低,当Zn的添加量为1%时,综合力学性能最好,其抗拉强度、屈服强度、伸长率分别为215 MPa、173 MPa和5.5%;合金的断裂方式主要为脆性断裂,加入Zn元素后有向韧性断裂转变的趋势。  相似文献   

14.
利用OM、SEM等手段对Mg-8Zn-1Ag-0.7Zr合金的微观组织、析出相成分和力学性能进行了研究,为工程应用提供参考。结果表明,Mg-8Zn-1Ag-0.7Zr合金以等轴晶方式凝固,铸态合金主要由α-Mg、Mg-Zn-Ag三元化合物和Zn_2Zr_3相组成,第二相主要集中分布在晶界上。热处理后,晶界上第二相的连续分布形态得到明显改善,Zn元素在基体中的含量变化明显。铸态时,Zn元素含量为3.09%,经固溶处理后,增加为8.24%。时效处理后,Zn元素含量下降至5.42%,起到很好的析出强化作用。T4态合金的抗拉强度、屈服强度和伸长率分别为311.4 MPa、147.4 MPa和13.7%,较铸态提高明显。经T6处理后,合金抗拉强度、屈服强度和伸长率为325.4 MPa、217.6 MPa和5.1%。  相似文献   

15.
通过成分分析、组织观察及力学性能测试等手段,研究了微量Al对Mg-Gd-Y-Nd-Zr合金铸态组织及室温力学性能的影响,分析了合金中相的组成,成分的沉降规律以及合金的断裂方式。结果表明,铸态Mg-Gd-Y-Nd-Zr镁合金主要由α-Mg基体和共晶组织构成,晶粒近似呈等轴状,晶粒尺寸约为40μm,铸锭轴向不同位置成分偏差较小,晶粒尺寸较为均匀;添加微量Al后成分分布发生明显变化,顶部及底部的晶粒尺寸出现显著差异;同时合金的力学性能也随位置不同而不同,均小于原始Mg-Gd-Y-Nd-Zr镁合金;合金断裂方式主要是沿晶界的脆性断裂,断口中存在明显的二次裂纹。添加Al后,与RE形成Al2RE相,与Zr形成Al3Zr相,液态即形成的大密度Al2RE及Al3Zr相在熔体中沉降,使得元素分布不均,顶部Zr含量明显减小,造成晶粒显著增大;Al2RE与Al3Zr相的存在降低了合金塑性,恶化铸态组织,导致合金发生沿晶脆性断裂。  相似文献   

16.
对Mg-6Zn-x Cu-0.6Zr(x=0,0.5,1.0,1.5)合金进行了熔炼并浇注在金属模中,然后进行了挤压成形试验。结果表明:铸态合金随着Cu含量的增加晶粒逐渐细化,第二相含量增多,其组织由α-Mg、MgZn_2及Mg Zn Cu相组成。合金经挤压后力学性能明显提高,其中挤压ZK60合金的动态再结晶较弱,晶粒细化程度较小。铸态合金组织中的第二相在挤压过程中被打碎,并沿着挤压方向分布。挤压态合金晶粒细化程度明显,其平均晶粒尺寸可达到10~13μm。Mg Zn Cu相呈短棒状分布在晶界,而Mg Zn2相呈细小的颗粒状分布在基体上。挤压态合金力学性能改善的原因可归结为细晶强化、第二相弥散强化及固溶强化综合作用的结果。其中挤压态Mg-6Zn-1.0Cu-0.6Zr力学性能最优,其抗拉强度、屈服强度及伸长率分别达到320.22 MPa,240 MPa和11.48%。  相似文献   

17.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射(XRD)及室温拉伸等手段,研究元素Si对铸造Mg-Gd-Y-Zr合金组织与力学性能的影响。结果表明:Mg-10Gd-1Y-xSi-0.5Zr(x=0,0.5,1,1.5,2)合金的铸态和固溶时效态显微组织均由α-Mg、Mg_5Gd和Mg_(24)Y_5相组成,Si的加入产生新相Mg_2Si。随着Si含量的增加,铸态合金中枝晶状组织明显减少并逐渐消失,晶粒细化,合金的析出相增多。时效态合金中当Si含量增加至1 mass%时,合金组织化学成分最均匀,析出相呈颗粒状和棒条状分布于基体中。在室温下,铸态和时效态合金的抗拉强度,均随着Si含量的增加先升后降,Mg-10Gd-1Y-1Si-0.5Zr合金的抗拉强度最高,时效态合金强度达到最高为256.2 MPa,比Mg-10Gd-1Y-0.5Zr合金高出将近40 MPa。合金的伸长率随Si含量的增加而减小,其断裂方式都属脆性断裂。  相似文献   

18.
采用光学金相显微镜、扫描电镜、能谱仪、X射线物相分析仪和透射电镜等研究了Al-10Zn-1.77Mg-1.0Cu-0.13Zr铝合金的微观组织演变和力学性能。结果表明:合金铸态组织为枝晶结构,主要存在α(Al)和η相(Mg Zn2)。双级均匀化处理后,铸态枝晶组织完全消除,非平衡共晶组织几乎完全回溶进基体。时效处理后,晶内析出相为针状η′相和球状GP区,晶界沉淀相η相沿晶界断续分布,晶界无析出区宽约23nm。基体沉淀相、晶界沉淀相以及晶界无析出区的良好匹配,使Al-10Zn-1.77Mg-1.0Cu-0.13Zr合金不仅具有超高的抗拉强度,同时还拥有良好的塑性。  相似文献   

19.
采用光学显微镜、拉伸试验机及显微硬度仪,研究了轧制温度对2524铝合金显微组织和力学性能的影响。结果表明:2524铝合金铸态组织中存在大量枝晶结构和成分偏析,经均匀化处理后枝晶消失,成分偏析改善。2524铝合金经大应变轧制后晶粒沿轧制方向被拉长,晶粒内部和晶界处留存大量第二相。随轧制温度降低,2524铝合金强度、硬度升高,断后伸长率先升后降。在轧制温度25℃时,抗拉强度以及硬度达到最高,分别为328 MPa和106.5 HV;在轧制温度为200℃时,伸长率达到最大值(14%)。  相似文献   

20.
采用扫描电镜、透射电镜、能谱分析和拉伸测试等手段,研究了热处理对Y、Zr微合金化Al-Mg-Si铝合金显微组织和力学性能的影响。结果表明:添加Y、Zr有助于细化合金铸态晶粒,合金铸态组织在晶界处有明显的偏析,经535 ℃×14 h均匀化处理后偏析现象得到改善。合金经热挤压后,沿挤压方向分布着大量的第二相,随着固溶温度的增加,第二相逐渐溶解在铝基体中。时效处理后,合金中弥散分布着大量的β″相以及其他细小的析出相,起到第二相强化的作用。合金经530 ℃×2 h固溶+180 ℃×8 h时效热处理后的力学性能最佳,抗拉强度达408 MPa,伸长率为14.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号