首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
热处理对Nd2Fe14B/α-Fe纳米复相磁体性能的影响   总被引:1,自引:0,他引:1  
为改善纳米复合永磁合金的磁性能,用熔体快淬和晶化热处理的方法制备了纳米复相Nd2Fe14B/α-Fe永磁体,研究了热处理工艺对Nd8Fe77B6Co8Nb1纳米晶复合磁体磁性能的影响.结果表明,热处理温度和时间明显影响纳米晶的形成及其磁性能.该纳米复合磁体在700℃×7min进行热处理时,可获得较好的磁性能,其矫顽力Hci=692kA/m,剩余磁感应强度Br=0.50T,最大磁能积(BH)max=51kJ/m3.  相似文献   

2.
为改善纳米晶交换耦合Nd2Fe14B/α-Fe永磁合金微结构以提高磁性能,用熔体快淬和动态晶化热处理的方法制备了纳米晶交换耦合Nd2Fe14B/α-Fe永磁体,采用XRD和TEM等方法系统研究了动态晶化热处理对Nd10.5(FeCoZr)83.4B6.1永磁体磁性能和显微组织的影响。结果表明:与传统晶化相比,动态晶化可以在相同的晶化温度下缩短晶化时间,同时能细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能。Nd10.5(FeCoZr)83.4B6.1合金快淬薄带经700℃,10min动态晶化热处理后,制得的粘结磁体获得最佳磁性能,剩磁Br=0.685T,内禀矫顽力Hcj=732kA/m,磁感矫顽力Hcb=429kA/m,最大磁能积(BH)m=75kJ/m^3。  相似文献   

3.
利用熔体快淬法和品化退火工艺制备了纳米晶复合NdFeB永磁粘结磁体,研究了添加Zr元素对磁体室温磁性能和温度稳定性的影响.结果表明,添加3at%Zr元素能明显提高磁体的矫顽力和最大磁能积.在淬速18 m/s、退火温度640℃下制备的Nd_(9.5_Fe_(76)Co_5Zr_3B_(6.5)粘结磁体具有良好的综合磁性能,即剩磁为0.71 T,矫顽力为652 kA/m,最大磁能积为80kJ/m~3.适量添加Zr元素可以有效改善磁体的温度稳定性,在20~150℃,纳米晶复合Nd_95Fe_(76)Co_5Zr_3B_(6.5)粘结磁体的剩磁温度系数为-0.13%/℃,内禀矫顽力温度系数为-0.35%/℃;在150℃时效100h后,不可逆磁通损失为-4.50%.  相似文献   

4.
采用快淬后真空晶化处理的方法制备出纳米晶复合合金Nd9.5Fe76-xCo5Zr3CuxB6.5(x=0~2),系统地研究了Cu元素对其磁性能的影响。结果表明:适量Cu元素的添加,可以提高磁体的剩磁Br、内禀矫顽力jHc和最大磁能积(BH)max,并且可以有效地提高磁体的剩磁温度系数α,但使磁体的矫顽力温度系数β略有降低。当Cu含量为0.25 at%时,该磁体具有最佳的综合磁性能:(BH)max=79 kJ/m3,jHc=685 kA/m,Br(T)=0.713 T;剩磁温度系数α20~150℃=0.071%/℃;矫顽力温度系数β20~150℃=0.36%/℃。  相似文献   

5.
通过在SmCo_5合金中掺杂Alnico5合金,并进行退火处理,研究了不同Alnico5合金添加量和退火时间对薄带微结构和磁性能的影响。研究发现,随着Alnico5合金量的增加,软磁相的含量和种类增加;薄带的磁性能呈现先增加后降低的趋势,并在x=4.0%时(质量分数),薄带获得最佳磁性能,即矫顽力Hc达到1 210kA/m、剩磁Mr达到45.2A·m~2/kg。同时发现,在600℃退火时,随着保温时间的延长,薄带的综合磁性能也呈现先增大后减小的趋势。当保温时间为30min时,薄带获得最佳的综合磁性能,且S5A2薄带的矫顽力最大,H_c=1 735kA/m。  相似文献   

6.
Mn-Ga合金具有高矫顽力和较高的磁晶各向异性,是一类具有较大发展前景的磁性材料。本文采用机械合金化方法开展Mn-20at%Ga纳米磁性复合材料的制备研究,高能球磨后合金在300 ~ 415℃温度区间、2 ~ 8小时保温时间进行退火。重点研究了磁性相种类、纳米晶尺寸和磁性能随退火条件的变化规律。研究发现,退火后Mn-20at%Ga磁性材料中的主要磁性相为纳米级尺寸的Mn3Ga相和Mn0.85Ga0.15相,另含有少量氧化导致的MnO2相。适当的提高退火温度和退火时间,可促进剩磁、矫顽力与磁能积的提高。在385℃时进行6小时的热处理,可获得最佳的磁性能:剩磁63.21 emu/cm3、矫顽力8.1 kOe、磁能积0.15 MGOe。通过适当的提高保温温度和保温时间,可使Mn0.85Ga0.15相的尺寸降低,并与矫顽力升高的趋势相一致。Mn0.85Ga0.15相晶粒尺寸的下降有利于提高合金的磁性能。  相似文献   

7.
磁场热处理对纳米复相Nd2Fe14B/α-Fe永磁体磁性能的影响   总被引:3,自引:1,他引:3  
研究了磁场热处理工艺对Nd10.5Fe76.4Co5Zr2B6.1永磁体组织结构和磁性能的影响,采用XRD、AFM等方法对合金的组织结构、晶化行为进行了研究.结果表明:与传统热处理工艺相比,晶化过程中外加磁场可促进快淬NdFeB粉末的晶化,降低晶化温度,缩短晶化时间;磁场热处理可细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能;在外加磁场为0.28 T,经670℃/10 min晶化处理后,可获得最佳磁性能,Br=0.670 T,Hcj=687kA/m,Hcb=427 kA/m,(BH)m=75 kJ/m3.  相似文献   

8.
采用快淬后真空晶化退火工艺制备了成分为Nd8.5-xDyxFe77Ga0.6Co5Zr2.7B6.2(x=0,0.5,1.0)的纳米晶复合永磁粘结磁体,研究其磁性能和温度系数的变化。结果表明,添加Dy元素能有效提高磁体的内禀矫顽力,但使其剩磁和较大磁能积略有下降。Dy含量为0.5at%时,制得的粘结磁体具有较佳磁性能:Br=0.728T,jHc=656.3kA/m,(BH)max=76.2kJ/m3。随着Dy元素的添加,合金的剩磁温度系数α逐渐降低,当Dy=1at%时,在20℃~150℃温度区间内平均剩磁温度系数α=-0.12%/℃。随着Dy元素的添加,合金的内禀矫顽力温度系数β呈先下降后上升的趋势。在Dy=0.5at%时,具有较低的β值,在20℃~150℃温度区间内平均内禀矫顽力温度系数β=-0.34%/℃。  相似文献   

9.
采用真空、氢气保护和氢气磁场工艺对高强度Fe-Co合金进行热处理,并对其热处理后磁性能进行了测试,分析了磁场热处理工艺下,加热温度,保温时间及磁场强度对合金磁性能的影响,同时还研究了热处理降温速率对合金性能的影响。结果表明,施加磁场在较低温度下可以有效提高合金磁性能,尤其是对低磁场下磁感应强度的提升十分有效,在760℃保温2.0 h,充磁200 A,降温速率为300~450℃/h时,可以同时获得较高的磁性能和力学性能,饱和磁感应强度Bs大于2.25 T,矫顽力Hc低于150 A/m,抗拉强度σb超过1000 MPa。  相似文献   

10.
用熔体快淬法制备了纳米复相结构Nd9Fe85-xB6Inx永磁体,利用XRD和VSM等方法研究了In掺杂和热处理温度对其磁性能的影响。结果表明,在磁体Nd9Fe85-xB6Inx中In掺杂可以提高其矫顽力和剩磁比,可改善磁体磁滞回线矩形度;有助于改善磁体Nd9Fe85-xB6Inx的热处理性能。在Nd9Fe85-xB6Inx中,不掺杂In和掺杂In为0.5mol%时,具有最佳的矫顽力和磁能积,其值分别为465kA/m和145kJ/m^3。  相似文献   

11.
采用快淬后真空晶化退火工艺制备了成分为Nd8.5-xDyxFe77Ga0.6Co5Zr2.7B6.2(x=0,0.5,1.0)的纳米晶复合永磁粘结磁体,研究其磁性能和温度系数的变化。结果表明,添加Dy元素能有效提高磁体的内禀矫顽力,但使其剩磁和较大磁能积略有下降。Dy含量为0.5at%时,制得的粘结磁体具有较佳磁性能:Br=0.728T,jHc=656.3kA/m,(BH)max=76.2kJ/m^3。随着Dy元素的添加,合金的剩磁温度系数α逐渐降低,当Dy=1at%时,在20℃~150℃温度区间内平均剩磁温度系数α=-0.12%/℃。随着Dy元素的添加,合金的内禀矫顽力温度系数β呈先下降后上升的趋势。在Dy=0.5at%时,具有较低的β值,在20℃~150℃温度区间内平均内禀矫顽力温度系数β=-0.34%/℃。  相似文献   

12.
研究了重复退火温度对SmCo_5和PrCo_5液相烧结永磁体磁硬性的影响。退磁剩磁曲线及矫顽力分布曲线表明,二者分别在750℃和600℃重复退火,磁硬性急剧恶化。在900℃重复退火时,两个磁体的分布曲线上在低场区已出现新的小峰,而且在高温再退火,小峰消失。推断,磁体的磁硬性恶化可能与磁体母相的相分解有联系。  相似文献   

13.
采用放电等离子烧结(SPS)技术制备致密块状纳米晶SmCo5烧结磁体,研究磁体的结构和磁性能.XRD结果表明:球磨粉末基本为非晶结构,烧结磁体具有CaCu5结构.TEM结果表明:磁体获得晶体均匀分布的组织结构,平均晶粒尺寸约为30 nm.电子选区衍射(SAED)分析表明:磁体主相为SmCO5相.室温时磁体的矫顽力高达2.28 MA/m,而剩磁比Mr/Ms高达0.7,并通过剩磁曲线-M-H及其变化趋势,说明在纳米晶之间存在强烈的晶间交换耦合作用.烧结磁体具有良好的高温性能,773 K时其矫顽力为0.72 MA/m,矫顽力温度系数β为-0.146%/K.  相似文献   

14.
采用高能球磨法制得SmCo7-xFex非晶粉末,然后采用放电等离子技术将其烧结为块状纳米晶磁体,对磁体的微观结构和磁性能进行了观察和测试.结果表明,SmCo7-xFex球磨5 h后成为非晶粉末,经SPS烧结后得到1:7相.TEM观察表明,磁体晶粒尺寸在20~50 nm.另外,磁体具有较好的磁性能,当x=0.4时,矫顽力为992.8 kA/m,剩磁为0.634T,(BH)max为69.75KJ/m3.  相似文献   

15.
采用真空感应熔炼获得了名义成分为Sm(Co0.715Fe0.20Cu0.06Zr0.025)7和Sm(Co0.715Fe0.20Cu0.06Zr0.025)9.5两种铸锭,经过破碎球磨后以不同的比例混粉制备不同z值的样品。然后使用不同的烧结温度、固溶温度以及时效工艺,对z值分别为7.86、7.63和7.41的三种成分的磁体进行了处理。结果表明,z值为7.86的磁体在室温时拥有最佳磁性能,剩磁、矫顽力和磁能积分别达到1.13T、2 387.32kA/m和226.40kJ/m3。在300℃时其剩磁为1.013T,矫顽力为831.59kA/m,最大磁能积为164.17kJ/m3,磁体综合磁性能良好。  相似文献   

16.
采用Ho部分取代Nd,制备了不同Ho含量的Ho-Nd-Fe-B磁体,研究了Ho含量对Ho-Nd-Fe-B磁体的磁性能、温度稳定性和微观结构的影响。结果表明:Ho的添加有助于改善主相和富稀土相之间的浸润性,优化晶界富稀土相的分布,提高了磁体的内禀矫顽力,并改善了磁体的温度稳定性,但磁体的剩磁有所下降。当Ho含量(质量分数)由0增加到21.0%时,H_(cj)由1281 kA/m增加到1637 kA/m,B_(r)由1.342 T降至0.919 T;在20~100℃范围内,磁体的剩磁温度系数|α|和矫顽力温度系数|β|分别由0.119%/℃和0.692%/℃降低到0.049%/℃和0.540%/℃;在180℃烘烤2 h后的磁通不可逆损失由54.80%降低到29.17%。  相似文献   

17.
采用电泳沉积(EPD)方法在烧结NdFeB磁体表面沉积Al膜,研究了不同电泳电压和沉积时间对沉积Al膜的影响,在此研究基础之上,探究了不同晶界扩散工艺对磁体微观组织和磁性能的影响。研究结果表明:最佳的电泳工艺为90 V/30 s,此时膜层与磁体结合情况良好,且厚度均匀适中。晶界扩散工艺为500 ℃/1 h时,磁体获得了最佳的综合磁性能,其矫顽力、剩磁和最大磁能积为953 kA/m、1.41 T和342 kJ/m3,分别提升了30.2%、0.7%和11.4%。微观结构和成分分析发现,晶界扩散后,晶间形成了更为平直光滑的富稀土相薄层,有助于降低退磁场和增强磁隔离效应,最终导致矫顽力的提高。  相似文献   

18.
采用直流磁控溅射的方法,在烧结NdFeB磁体表面制备了DyZn薄膜,研究了热扩渗处理磁体前后的磁性能、温度稳定性及微观组织结构变化。结果表明,晶界扩散渗DyZn处理后,磁体在保持剩磁基本不降低的情况下,矫顽力大幅度提升,矫顽力从原来的963.68 kA/m提高到1544.60 kA/m,增幅达63.31%。晶界扩散处理可以改善磁体的温度稳定性,在293~453 K范围内,剩磁温度系数基本不变,而矫顽力温度系数由–0.5533%/K降低为–0.4885%/K。通过对样品微观组织结构观察发现,Dy元素沿着晶界液相扩散,主要富集在晶界相和晶粒外延层处,晶界相结构与成分的优化、及晶界和晶粒之间(Nd,Dy)_2Fe_(14)B过渡层的形成是矫顽力大幅度提升的主要原因。  相似文献   

19.
为满足高频变压器对铁芯低损耗的需求,研究了新型Fe72.7Si17B6.8Nb2.6Cu0.9纳米晶铁芯的热处理工艺,探讨了铁芯动态、静态软磁性能随无磁场退火保温时间与施加不同磁场强度的横磁磁场退火时的变化规律。结果表明,不加磁场时,保温时间为60 min时铁芯的损耗最低,为P20 kHz/0.5 T=11.82 W/kg,而其静态软磁性能在保温30 min处于最优状态,Hc30 min=1.86 A/m。施加横向磁场后,其直流磁性能剩磁和矫顽力显著降低,Hc40 mT=0.64 A/m,而其损耗在磁场强度为50 mT达到最低,为P20 kHz/0.5 T=10.53 W/kg。高频范围内涡流损耗在铁芯损耗中起主导作用,新型纳米晶铁芯经横向磁场热处理后高频损耗大幅降低,同时磁导率表现优异。  相似文献   

20.
采用直流磁控溅射法制备了TbFe/feAl超磁致伸缩多层膜,研究了FeAl薄膜的复合对TbFe薄膜磁性能以及热处理温度对TbFe/FeAl磁致伸缩多层膜磁致伸缩系数的影响.结果表明.ThFe层与FeAl层之间的交换耦合作用以及热处理能明显提高薄膜的软磁性能和磁致伸缩性能;与TnFe单层膜相比,TbFe/FeAl多层膜水平方向的矫顽力从59.2kA·m-1降低到29.6kA·m-1;经最佳退火处理(350℃×60min),获得了较低的饱和磁场强度和矫顽力,分别为H =96kA·m-1和,H =16kA·m-1;外加磁场400kA·m-1时,ThFe/FeAl磁致伸缩多层膜磁致伸缩系数可达574×10-6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号