首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to design sterile biodegradable microparticulate drug delivery systems based on poly(dl-lactide) (PLA) and poly(?-caprolactone) (PCL) and containing ivermectin (IVM), an antiparasitic drug, for subcutaneous administration in dogs. The drug delivery system should: (i) ensure a full 12-month protection upon single dose administration; (ii) be safe with particular attention regarding IVM dosage and its release, in order to prevent over dosage side effects. This preliminary work involves: polymer selection, evaluation of the effects of γ-irradiation on the polymers and IVM, investigation and set up of suitable microparticle preparation process and parameters, IVM-loaded microparticles in vitro release evaluation.

Results of gel permeation chromatography analysis on the irradiated polymers and IVM mixtures showed that combination of IVM with the antioxidant α-tocopherol (TCP) reduces the damage extent induced by irradiation treatment, independently on the polymer type.

Solvent evaporation process was successfully used for the preparation of PLA microparticles and appropriately modified; it was recognized as suitable for the preparation of PCL microparticles. Good process yields were achieved ranging from 76.08% to 94.72%; encapsulation efficiency was between 85.76% and 91.25%, independently from the polymer used. The type of polymer and the consequent preparation process parameters affected microparticle size that was bigger for PCL microparticles (480–800?µm) and solvent residual that was >500?ppm for PLA microparticles. In vitro release test showed significantly faster IVM release rates from PCL microparticles, with respect to PLA microparticles, suggesting that a combination of the polymers could be used to obtain the suitable drug release rate.  相似文献   

2.
The experimental characterisation of electrospun poly(lactic acid) (PLA):poly(ε-caprolactone) (PCL) as drug carriers, at five blend ratios from 1:0, 3:1, 1:1, 1:3 and 0:1, was holistically investigated in terms of their morphological structures, crystallinity levels and thermal properties. A widely used antibiotic tetracycline hydrochloride (TCH) was loaded to prepared fibrous mats at TCH concentrations of 1 and 5 wt%. The additional TCH into PLA:PCL better facilitates the reduction of fibre diameter than polymer blends. Increasing the TCH concentration from 1 to 5 wt% was found to result in only a modest decrease in the crystallinity level, but a significant increase in the crystallisation temperature (T c) for PLA within PLA:PCL blends. The infrared spectra of fibre mats confirm the successful TCH encapsulation into fibrous networks. The first order and Zeng models for drug release kinetics were in better agreement with experimental release data, indicating the release acceleration of TCH with increasing its concentration. In a typical case of PLA:PCL (1:1) loaded with 5 wt% TCH, the fibre mats apparently demonstrate more wrinkled and floppy structures and increased fibre diameters and decreased inter-fibrous spaces after 7-day in vitro fibre degradation, as opposed to those obtained after 3-h degradation.  相似文献   

3.
Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram‐positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L‐lactide‐co‐glycolide) (PLGA) nano‐formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH‐PLA and CLH‐PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH‐PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies.Inspec keywords: drug delivery systems, biomedical materials, antibacterial activity, nanoparticles, nanomedicine, microorganisms, polymers, nanofabrication, differential scanning calorimetry, encapsulation, drugs, scanning electron microscopy, Fourier transform infrared spectraOther keywords: Streptococcus faecalis, Bacillus cereus, DSC, stable nanoformulation, monodispersed nanoformulation, pathogenic bacteria, FTIR spectra, molecular dispersion, thermal behaviour, controlled release profile, Fourier transform infrared spectra, differential scanning calorimetry, scanning electron microscopy, drug loading, encapsulation efficiency, polymer concentration, solvent evaporation method, molecular level, drug bioavailability, stabilised clindamycin encapsulated poly lactic acid‐poly (D,L‐lactide‐co‐glycolide) nanoformulation, protozoa, Chlamydia, anaerobic bacteria, gram‐positive aerobes, antimicrobial activity, oral antibiotics, oral delivery, PLA‐PLGA based nanoparticle system, clindamycin hydrochloride  相似文献   

4.
Objective: To develop an oral sustained release formulation of mycophenolate mofetil (MMF) for once-daily dosing, using chitosan-coated polylactic acid (PLA) or poly(lactic-co-glycolic) acid (PLGA) nanoparticles. The role of polymer molecular weight (MW) and drug to polymer ratio in encapsulation efficiency (EE) and release from the nanoparticles was explored in vitro.

Methods: Nanoparticles were prepared by a single emulsion solvent evaporation method where MMF was encapsulated with PLGA or PLA at various polymer MW and drug: polymer ratios. Subsequently, chitosan was added to create coated cationic particles, also at several chitosan MW grades and drug: polymer ratios. All the formulations were evaluated for mean diameter and polydispersity, EE as well as in vitro drug release. Differential scanning calorimetry (DSC), surface morphology, and in vitro mucin binding of the nanoparticles were performed for further characterization.

Results: Two lead formulations comprise MMF: high MW, PLA: medium MW chitosan 1:7:7 (w/w/w), and MMF: high MW, PLGA: high MW chitosan 1:7:7 (w/w/w), which had high EE (94.34% and 75.44%, respectively) and sustained drug release over 12?h with a minimal burst phase. DSC experiments revealed an amorphous form of MMF in the nanoparticle formulations. The surface morphology of the MMF NP showed spherical nanoparticles with minimal visible porosity. The potential for mucoadhesiveness was assessed by changes in zeta potential after incubation of the nanoparticles in mucin.

Conclusion: Two chitosan-coated nanoparticles formulations of MMF had high EE and a desirable sustained drug release profile in the effort to design a once-daily dosage form for MMF.  相似文献   


5.
Background: The high water solubility and the low molecular weight of cytarabine (Ara-C) are major obstacles against its particulate formulation as a result of its low affinity to the commonly used hydrophobic polymers. Methods: Biodegradable cytarabine loaded-microparticles (Ara-C MPs) were elaborated using poly(?-caprolactone) (PCL) and monomethoxy polyethylene glycol (mPEG)–PCL diblock copolymer in order to increase the hydrophilicity of the polymeric matrix. For this purpose, a series of mPEG–PCL diblock copolymers with different PCL block lengths were synthesized. Compositions and molecular weights of obtained copolymers were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, size exclusion chromatography, and size exclusion chromatography–multi-angle laser light scattering. Ara-C MPs were prepared by double emulsion-solvent evaporation method. The effects of varying PCL block lengths on microparticle encapsulation efficiency, size, and zeta potential were evaluated. Results: Increasing the PCL block lengths of copolymers substantially increased the Ara-C encapsulation efficiency and the microparticle size but it decreased their zeta potential. Microparticles were spherical in shape, with a smooth surface and composed of homogenously distributed Ara-C-containing aqueous domains in the polymer matrix. The in vitro drug release kinetics of the optimized microparticles showed a hyperbolic profile with an initial burst release. Conclusion: These results showed the important role of the amphiphilic diblock copolymers as stabilizing agent in the encapsulation of Ara-C in PCL microparticles, suggesting their potential use for the microparticulate formulations of other small hydrophilic bioactive molecules.  相似文献   

6.
ABSTRACT

Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-?-caprolactone and poly(d,l-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit® RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 µm and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively), but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

7.
ABSTRACT

Beta-estradiol has been recommended for the long-term therapy of osteoporosis and its oral formulations are subjected to intensive first pass metabolism. The present investigation was aimed at preparing and characterizing biodegradable microparticles of beta-estradiol with polymers such as PLA, PLGA 85/15, PLGA 75/25, and their mixtures. The microparticles were prepared by solvent evaporation method using methylene chloride as a solvent and polyvinyl alcohol as a surfactant. The drug-polymer ratios were 1:3, 1:5, and 1:7. The prepared microparticles (twelve formulations) were tested for encapsulation efficiency and in vitro drug release in 50% methyl alcohol/phosphate buffer pH 7.4. The results showed that the encapsulation efficiency varied from 81 to 100% and the formulation fabricated from PLGA 85/15 (1:3) showed less burst and consistent long time release. This formulation when further characterized displayed irregular spherical shape with an average particle size of 72 µm. The crystallinity of the drug was reduced when investigated using X-ray diffractometry. No chemical interaction between the drug and the polymer was observed as evidenced by FT-IR analysis. The results indicated that beta-estradiol biodegradable microparticles with PLGA 85/15 (1:3) could be a suitable approach for long term therapy of osteoporosis.  相似文献   

8.
Preparation and characterization of heparin-loaded polymeric microparticles   总被引:1,自引:0,他引:1  
Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-epsilon-caprolactone and poly(D,L-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 microns and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively) but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

9.
Tri-block poly(lactide)–poly(ethylene glycol)–poly(lactide) (PLA–PEG–PLA) copolymers were synthesized and used to prepare polymersomes loaded separately by the hydrophobic and hydrophilic model drugs, atorvastatin and lisinopril, respectively. The resulting nanostructures were characterized by various techniques such as FTIR, DSC, PCS and AFM. The polymersomes exhibited high encapsulation efficiencies of almost 78% and 70.8% for atorvastatin and lisinopril, respectively. Investigation on FTIR and DSC results revealed that such a high encapsulation efficiency is due to strong interaction between atorvastatin and the copolymer. The impact of drug/copolymer ratio and copolymer composition on drug-loading efficiency and drug release behavior were also studied. The results showed that in case of lisinopril, polymersomes exhibited a triphasic drug release, while for atorvastatin a biphasic release profile was obtained. Overall, the results indicated that PLA–PEG–PLA polymersomes can be considered as a promising carrier for both hydrophilic and hydrophobic drugs.  相似文献   

10.
Abstract

Seven batches of poly(D, L-lactic acid) (PLA) were prepared from D, L-lactic acid using tetraphenyltin or zinc acetate as a catalyst. The samples of PLA were characterized by terminal group analysis, gel permeation chromatography, infrared analysis, and differential scanning calorimetry. Polymerization conditions such as the time of reaction and the type of catalyst affected the molecular weight of PLA. Microspheres containing indomethacin were prepared by the oil/water (o/w) solvent evaporation technique using different formulations and process variables. The in vitro release of indornethacin in phosphate buffer was found to be dependent on the molecular weight of PLA and also on the type and amount of adjuvants used. The batch of microspheres containing 5% cholesterol released the drug at a slow controlled rate (29%, 65%. and 85% in 1, 7, and 24 hr, respectively). The results of F test for the microspheres revealed that there is no significant direrence between the Higuchi model and the power law equation. The drug was released by a dimsion mechanism from the microspheres.  相似文献   

11.
D-alpha-tocopheryl poly (ethylene glycol) 1000 succinate (TPGS) is a widely used form of vitamin E that has been used as a solubilizer, an emulsifier and as a vehicle for drug delivery formulations. In this study, poly lactide-co-glycolide (PLGA) nanoparticles were prepared by spontaneous emulsification solvent diffusion (SESD) method. TPGS as an emulsifier and further as a matrix material blended with PLGA was used to enhance the encapsulation efficiency and improve the drug release profile of nanoparticles. Rifampicin and estradiol valerate were used as model drugs with different water solubility. The effect of formulation parameters such as drug/polymer ratio, oil phase combination, volume and surfactant content was evaluated. The surface morphology and size of the nanoparticles were studied by scanning electron microscopy (SEM) and laser light scattering. Drug encapsulation efficiency and in vitro drug release profiles of nanoparticles were determined using high performance liquid chromatography (HPLC). The nanoparticles prepared in this study were spherical with size range of 150–250?nm. It was shown that TPGS was a good emulsifier for producing nanoparticles of hydrophobic drugs and improving the encapsulation efficiency and drug loading and drug release profile of nanoparticles. However, the drug loading efficiency of rifampicin, a slightly water-soluble molecule, was significantly lower than that of estradiol valerate, a water insoluble molecule.  相似文献   

12.
Abstract

Letrozole (LTZ) is effective for the treatment of hormone-receptor-positive breast cancer in postmenopausal women. In this work, and for the first time, using vibrating orifice aerosol generator (VOAG) technology, monodisperse poly-ε-caprolactone (PCL), and poly (D, L-Lactide) (PDLLA) LTZ-loaded microparticles were prepared and found to elicit selective high cytotoxicity against cancerous breast cells with no apparent toxicity on healthy cells in vitro. Plackett–Burman experimental design was utilized to identify the most significant factors affecting particle size distribution to optimize the prepared particles. The generated microparticles were characterized in terms of microscopic morphology, size, zeta potential, drug entrapment efficiency, and release profile over one-month period. Long-term cytotoxicity of the microparticles was also investigated using MCF-7 human breast cancer cell lines in comparison with primary mammary epithelial cells (MEC). The prepared polymeric particles were monodispersed, spherical, and apparently smooth, regardless of the polymer used or the loaded LTZ concentration. Particle size varied from 15.6 to 91.6?µm and from 22.7 to 99.6?µm with size distribution (expressed as span values) ranging from 0.22 to 1.24 and from 0.29 to 1.48 for PCL and PDLLA based microparticles, respectively. Upon optimizing the manufacture parameters, span was reduced to 0.162–0.195. Drug entrapment reached as high as 96.8%, and drug release from PDLLA and PCL followed a biphasic zero-order release using 5 or 30% w/w drug loading in the formulations. Long-term in vitro cytotoxicity studies indicated that microparticles formulations significantly inhibited the growth of MCF-7 cell line over a prolonged period of time but did not have toxic effects on the normal breast epithelial cells.  相似文献   

13.
Beta-estradiol has been recommended for the long-term therapy of osteoporosis and its oral formulations are subjected to intensive first pass metabolism. The present investigation was aimed at preparing and characterizing biodegradable microparticles of beta-estradiol with polymers such as PLA, PLGA 85/15, PLGA 75/25, and their mixtures. The microparticles were prepared by solvent evaporation method using methylene chloride as a solvent and polyvinyl alcohol as a surfactant. The drug-polymer ratios were 1:3, 1:5, and 1:7. The prepared microparticles (twelve formulations) were tested for encapsulation efficiency and in vitro drug release in 50% methyl alcohol/phosphate buffer pH 7.4. The results showed that the encapsulation efficiency varied from 81 to 100% and the formulation fabricated from PLGA 85/15 (1:3) showed less burst and consistent long time release. This formulation when further characterized displayed irregular spherical shape with an average particle size of 72 µm. The crystallinity of the drug was reduced when investigated using X-ray diffractometry. No chemical interaction between the drug and the polymer was observed as evidenced by FT-IR analysis. The results indicated that beta-estradiol biodegradable microparticles with PLGA 85/15 (1:3) could be a suitable approach for long term therapy of osteoporosis.  相似文献   

14.
We have encapsulated indomethacin into poly (lactide-co-glycolide) (PLGA) using coaxial ultrasonic atomization technique. The specific aims of this study were to evaluate the effect of drug loading and a change in relative concentration of polymer in the inner and outer layers of coflowing spray liquids on the physicochemical characteristics of the particles. Indomethacin, a non steroidal anti-inflammatory drug, was selected as a model compound. The micro/nanocapsules prepared using a drug free PLGA solution as an outer layer showed higher encapsulation efficiency. Thermal analysis of the formulations indicated that indomethacin was dissolved within the PLGA matrix. The formulations prepared with 25mg indomethacin showed relatively smaller particle size compared with the formulations prepared with 50 mg indomethacin. The particles, in general, showed bi- and tri-modal distribution. Irrespective of the compositions of the liquids 1 and 2, all the particles were smooth and spherical. A cross-section view of the particles revealed the presence of three different internal morphologies. These formulations were a mixture of hollow or solid spheres, and single or multiple spheres encapsulated into a larger sphere. To the best of our knowledge, this is the first study revealing the cross-sectional view of particles prepared with coaxial ultrasonic atomization technique.  相似文献   

15.
We have encapsulated indomethacin into poly (lactide-co-glycolide) (PLGA) using coaxial ultrasonic atomization technique. The specific aims of this study were to evaluate the effect of drug loading and a change in relative concentration of polymer in the inner and outer layers of coflowing spray liquids on the physicochemical characteristics of the particles. Indomethacin, a non steroidal anti-inflammatory drug, was selected as a model compound. The micro/nanocapsules prepared using a drug free PLGA solution as an outer layer showed higher encapsulation efficiency. Thermal analysis of the formulations indicated that indomethacin was dissolved within the PLGA matrix. The formulations prepared with 25mg indomethacin showed relatively smaller particle size compared with the formulations prepared with 50 mg indomethacin. The particles, in general, showed bi- and tri-modal distribution. Irrespective of the compositions of the liquids 1 and 2, all the particles were smooth and spherical. A cross-section view of the particles revealed the presence of three different internal morphologies. These formulations were a mixture of hollow or solid spheres, and single or multiple spheres encapsulated into a larger sphere. To the best of our knowledge, this is the first study revealing the cross-sectional view of particles prepared with coaxial ultrasonic atomization technique.  相似文献   

16.
The aim of this work was to study the influence of the concentration and molecular weight of poly(DL-lactide) (PLA) on the characteristics and in vivo biological activity of protein-loaded microspheres. At the same time, an attempt was made to achieve further optimization of the formulation. In the study, insulin was chosen as a model of protein drugs. Nine formulations of injectable insulin-loaded PLA microspheres were prepared using an emulsification and solvent evaporation process according to a factorial design. The trapping efficiency, drug loading, and the drop percentages of blood glucose levels at 24 hr and 72 hr in mice were used to evaluate the formulations. The results showed that PLA molecular weight and, especially, PLA concentration exerted influences on the characteristics and in vivo biological activity of insulin-loaded microspheres. The drug-trapping efficiency increased with the increase of the polymer concentration. The drug loading decreased with the increase of the polymer concentration and was not obviously affected by PLA molecular weight. The drop percentage of blood glucose level at 24 hr increased with the increase of polymer concentration and molecular weight. At 72 hr, the drop percentages of blood glucose levels were slightly increased with the increase of PLA concentration and then significantly decreased after the PLA concentration was above 150 mg/ml. An optimized formulation was prepared with PLA-10k at a concentration of 200 mg/ml. The experimental values of the response variables were close to the predicted values. The results suggest that the in vivo release behavior should be taken into consideration in the design of protein-loaded PLA microspheres.  相似文献   

17.
The aim of this work was to study the influence of the concentration and molecular weight of poly(DL-lactide) (PLA) on the characteristics and in vivo biological activity of protein-loaded microspheres. At the same time, an attempt was made to achieve further optimization of the formulation. In the study, insulin was chosen as a model of protein drugs. Nine formulations of injectable insulin-loaded PLA microspheres were prepared using an emulsification and solvent evaporation process according to a factorial design. The trapping efficiency, drug loading, and the drop percentages of blood glucose levels at 24 hr and 72 hr in mice were used to evaluate the formulations. The results showed that PLA molecular weight and, especially, PLA concentration exerted influences on the characteristics and in vivo biological activity of insulin-loaded microspheres. The drug-trapping efficiency increased with the increase of the polymer concentration. The drug loading decreased with the increase of the polymer concentration and was not obviously affected by PLA molecular weight. The drop percentage of blood glucose level at 24 hr increased with the increase of polymer concentration and molecular weight. At 72 hr, the drop percentages of blood glucose levels were slightly increased with the increase of PLA concentration and then significantly decreased after the PLA concentration was above 150 mg/ml. An optimized formulation was prepared with PLA-10k at a concentration of 200 mg/ml. The experimental values of the response variables were close to the predicted values. The results suggest that the in vivo release behavior should be taken into consideration in the design of protein-loaded PLA microspheres.  相似文献   

18.
Poly(ε-caprolactone) (PCL) is known for its biocompatibility and biodegradability. These features of PCL have resulted into significant academic as well as industrial research interests for use of this polymer in various areas including biomedical and tissue engineering. Three-dimensional porous scaffolds, controlled drug release systems and nerve guides are some of the forms in which this polymer has been used. Despite these forms, fibers made of PCL have not gained much attention due to PCL's low melting point (57–60 °C) and relatively inferior mechanical properties as compared to poly(L-lactide) (PLA). Also the polymer is sensitive to the process conditions of melt spinning which leads to degradation of PCL when subjected to high temperatures in the presence of air or moisture. Here we present an approach in which addition of a bilactone, bis-(ε-caprolactone-4-yl) (BCY), during melt spinning of PCL resulted into monofilament fibers having tenacity as high as 2500 MPa. The cross-linking of PCL which occurred due to BCY transesterification compensated for molecular weight reduction of the polymer under melt spinning conditions. PCL monofilament fibers thus developed have enhanced thermo-mechanical properties and therefore have high potential to be used in tissue engineering applications in the form of sutures, a mesh or a non-woven.  相似文献   

19.
The glucose-responsive nanocapsules [CS-NAC/p(GAMA-r-AAPBA)] were readily fabricated with modified chitosan (CS-NAC) and random glycopolymer poly(d-gluconamidoethyl methacrylate-r-3-acrylamidophenylboronic acid) p(GAMA-r-AAPBA) as the alternant multilayered polyelectrolyte hybrid shell via layer-by-layer self-assembly after etching the amino functionalized SiO2 spheres by NH4F/HF. The spherical and hollow structure of nanocapsules was confirmed by TEM analysis and there was no clear collapse found after removal of the sacrificial cores. The reversible zeta potential changes of the nanocapsule materials evaluated the reversible glucose sensitivity. Besides, this system demonstrated a good capacity for encapsulation and loading insulin entrapped in nanocapsules as model protein drug. A good biocompatibility of the material was confirmed by the cell viability. In vitro release of insulin experiments revealed that no obvious release was found in acidic condition and the release could be normally conducted at physiological pH. These results implied that it was feasible for nanocapsules to be used in controlled release drug delivery system.  相似文献   

20.
Formulation of biodegradable collagen–poly-?-caprolactone (PCL) based biomaterials for the sustained release of insulin is the main objective of the present work. PCL has been employed to modulate the physico-chemical behavior of collagen to control the drug release. Designed formulations were employed to statistically optimize insulin release parameter profile at different collagen to PCL molar ratios. Circular dichroism, thermoporometry, FTIR, impedance and scanning electron microscopy techniques have been employed to investigate the effect of PCL on hydration dynamics of the collagen molecule, which in turn changes the dissolution parameters of the drug from the systems. Drug entrapment efficiency has been found to be maximum for collagen to PCL molar ratio of 1:2 (> 90%). In vitro dissolution test reveals that 99% of the drug was released from composite at collagen to PCL molar ratio of 1:3 and 1:4 within 2 h, which indicates that hydrophobicity of the matrix results in weak interaction between lipophilic drug and carrier materials. The least burst release was observed for collagen to PCL molar ratio at 1:2 as synergistic interactions between collagen and PCL was maximum at that particular polymer–polymer ratios. The drug release data indicates super case-II transport of drug (n > 1.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号