首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile than was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

2.
This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile that was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

3.
This study demonstrates the differences obtained when using different corn starch products as both binder and disintegrant in pharmaceutical tablets. Formulations made with Fluftex W, Tablet White and Purity 21 starches were compared. In addition, Avicel PH101 was used in this study as a benchmark component whose properties are well understood.

Four test formulations containing hydrochlorothiazide were prepared by wet granulation. Starch was incorporated in both powder and paste form. All granulations were found to possess similar traits when evaluated based upon geometric mean diameter, particle size distribution, bulk/tap densities, powder flow rate and surface characteristics.

Tablets prepared from these granulations were shown to be similar when evaluated for degree of friability, weight and content uniformity. All starch formulations disintegrated within 30 seconds and produced similar dissolution profiles. Tablets produced with Avicel, however, were found to exhibit significantly longer disintegration times than the starch formulations. In addition, these tablets displayed a dissolution profile than was significantly different than the starch formulations, particularly during the earlier stages of the dissolution process.

When monitoring compression and ejection forces required to produce tablets of the same degree of hardness (≈6kg), Fluftex W and Tablet White granulations were found to use significantly lower forces than the Purity 21 granulation. This may be indicative of Fluftex W and Tablet White's superiority over Purity 21 in terms of binder capacity.  相似文献   

4.
Abstract

A study was carried out to evaluate some parameters which may have an effect on the dissolution rate of prednisone from tablets. The parameters examined involving formulation were: diluent proportion (Lactose-starch), dissintegrant type (starch, explotab (sodium starch glycolate) type of binder (starch paste, gelatine water solution and PVP alcoholic solution), lubricant, and dye concentration. The Manufacturing variables studied were: method of manufacture (wet granulation, direct compression and double compression), granule size in wet granulation and tablet hardness. dissolution profiles of tablets storaged 2 months at 45°C were compared with those of fresh samples. Tablets prepared with prednisone five years old, tablets with fresh active ingredient and tablets with two different prednisone concentrations (5 and 50 mg per tablet) were used for other evaluations.

In all cases micronized prednisone was used and all batches were physically and chemically evaluated before studying their dissolution following the USP basket method.

The parameters studied that affected significatively dissolution rate of prednisone were: type of binder, lubricant concentration, method of manufacture, active ingredient, age and prednisone concentration.  相似文献   

5.
The feasibility of dextrose monohydrate as a non-animal sourced diluent in high shear wet granulation (HSWG) tablet formulations was determined. Impacts of granulation solution amount and addition time, wet massing time, impeller speed, powder and solution binder, and dry milling speed and screen opening size on granule size, friability and density, and tablet solid fraction (SF) and tensile strength (TS) were evaluated. The stability of theophylline tablets TS, disintegration time (DT) and in vitro dissolution were also studied. Following post-granulation drying at 60?°C, dextrose monohydrate lost 9% water and converted into the anhydrate form. Higher granulation solution amounts and faster addition, faster impeller speeds, and solution binder produced larger, denser and stronger (less friable) granules. All granules were compressed into tablets with acceptable TS. Contrary to what is normally observed, denser and larger granules (at ≥21% water level) produced tablets with a higher TS. The TS of the weakest tablets increased the most after storage at both 25?°C/60% RH and 40?°C/75% RH. Tablet DT was higher for stronger granules and after storage. Tablet dissolution profiles for 21% or less water were comparable and did not change on stability. However, the dissolution profile for tablets prepared with 24% water was slower initially and continued to decrease on stability. The results indicate a granulation water amount of not more than 21% is required to achieve acceptable tablet properties. This study clearly demonstrated the utility of dextrose monohydrate as a non-animal sourced diluent in a HSWG tablet formulation.  相似文献   

6.
Abstract

Commercialized carboxymethystarches (CMS) are both carboxyme-thylated and cross linked potato starch.

The influence of carboxymethylation and cross linkage on the disintegrating properties of starch are studied.

Tablets are made with acetaminophen as drug, Emcompress as diluant, Magnesium stearat as lubricant, and potato starch or its derivatives as disintegrants.

Tablets are prepared by direct compression or by wet granulation with the disintegrant intervening only in internal phasis.

Five disintegrants were studied, with two different concentrations:

native potato starch

potato starch simply cross linked

potato starch simply carboxymethylated

two potato starches both cross linked and carboxymethylated at two different degrees

Compressibility of powders blending and grain for compression are discussed.

The hardness, the tablet disintegration and the rate of drug dissolution are studied.

The results showed that the simply carboxymethylated starch has a totally different behaviour after direct compression or wet granulation. The poor results after wet granulation could be imputed to the bursting of starch granules during grain drying. Since it has lost its granular structure, the carboxymethylated starch will only allow a poor disintegration and a slow dissolution of the drug.

A very similar behaviour of native and simply cross linked starch: the results of which are bad for tablets either prepared by wet granulation or direct compression.

A very similar behaviour of the starches both carboxymethylated and cross linked, allowing a very good disponibility, either with tablets prepared by direct compression or wet granulation. These experiments prove :

the need for an sufficient cross linkage for CMS in a wet granulation process  相似文献   

7.
Abstract

The effect of storage for 8 weeks at 40°C in moderate and high humidity on acetaminophen tablets prepared by the wet granulation method using povidone or pregelatinized starch as a binder was studies. Storage at 52% relative humidity produced an increase in hardness of acetaminophen tablets and storage at 94% relative humidity caused a decrease in hardness. In all cases tablets granulated with pregelatinized starch were less susceptible to change caused by humidity than tablets granulated with povidone. The disintegration of tablets containing starch or povidone was slowed as the humidity was increased. Tablets stored at 40 =C and 94 V. relative humidity showed a substantial slowing of dissolution, but there was little change of dissolution of tablets when aged at 40 -C / 52% relative humidity. In comparing starch and povidone as binders, acetaminophen tablets prepared with pregelatinized starch were less effected by high humidity than tablets prepared with povidone.  相似文献   

8.
Abstract

Hardness, disintegration and dissolution of compressed tablets were assessed by compressing tablets from granulations prepared by dry and wet granulation process of two sections and by composite wet granulation process. Modified USP XVIII apparatus for disintegration, rotating basket apparatus USP XVIII and constant circulation apparatus were employed for measuring dissolution. The constant circulation apparatus was used in the studies as only it proved to be sensitive to reflect the differences in the dissolution rates and was a close analog of physiological situation. Four types of tablets containing acetylsalicylic acid, codeine phosphate and propoxyphene hydrochloride were prepared. Tablets prepared by partial dry and wet granulation process did not show significant differences in the rates of dissolution as compared to those prepared by complete wet granulation process.  相似文献   

9.
Abstract

The applicability of a 25 litre high shear mixer for moisture-activated dry granulation was examined. Microcrystalline cellulose, potato starch or a mixture of 50% m/m of each was used as moisture absorbing material. The effects of water content, wet massing time, moisture absorbing material and dry mixing time on the size distribution, and the compressibility of the granulations were investigated. Tablets were compressed on a single punch press from all the granulations and on a rotary press from a few of the granulations.

It was shown that the physical properties of the tablets were primarily affected by the water content, the moisture absorbing material, and the compression force. Tablets with low mass variation, high crushing strength, low friability, and short disintegration time were achieved with both tablet presses by using a mixture of microcrystalline cellulose and potato starch as moisture absorbing material.  相似文献   

10.
Abstract

Several granulations consisting of α-lactose monohydrate 200 mesh and native starch (corn, potato, rice or tapioca) were prepared. The influence of starch concentration, storage temperature and relative humidity on the physical properties of the tablets prepared from these granulations was estimated. Two granulations, which resulted in tablets with adequate initial values of crushing strength and disintegration time and with an acceptable physical stability were selected as standard granulations. The selected standard granulations were evaluated by incorporating a drug (diazepam, 2 mg or mebendazole, 100 mg). The tablet properties were determined one day after preparation. The crushing strength, the disintegration time and the microbiological quality were also measured after storage under tropical conditions. Both selected formulations proved to be adequate for the preparation of tablets by wet granulation, suitable for use in tropical countries.  相似文献   

11.
Abstract

Cissus root gum was processed and evaluated as a binder in lactose-based tablets each containing 100 mg of sodium salicylate as the active ingredient. Acacia binder was used as basis for comparison. Tablet hardness, friability, disintegration time and dissolution rate were the parameters investigated. The cissus gum gave hard and non-friable tablets at 1 - 3% w/w concentration of the tablet formula. Tablets containing above 2% w/w of the cissus gum gave high disintegration time values and the pattern of dissolution of the incorporated drug suggests that the gum may be useful in prolonged release tablet formulations. No significant changes in the tablet properties was observed after storage at 30°C for 16 weeks.  相似文献   

12.
A study was carried out to evaluate some parameters which may have an effect on the dissolution rate of prednisone from tablets. The parameters examined involving formulation were: diluent proportion (Lactose-starch), dissintegrant type (starch, explotab (sodium starch glycolate) type of binder (starch paste, gelatine water solution and PVP alcoholic solution), lubricant, and dye concentration. The Manufacturing variables studied were: method of manufacture (wet granulation, direct compression and double compression), granule size in wet granulation and tablet hardness. dissolution profiles of tablets storaged 2 months at 45°C were compared with those of fresh samples. Tablets prepared with prednisone five years old, tablets with fresh active ingredient and tablets with two different prednisone concentrations (5 and 50 mg per tablet) were used for other evaluations.

In all cases micronized prednisone was used and all batches were physically and chemically evaluated before studying their dissolution following the USP basket method.

The parameters studied that affected significatively dissolution rate of prednisone were: type of binder, lubricant concentration, method of manufacture, active ingredient, age and prednisone concentration.  相似文献   

13.
Abstract

The effects of binders and moisture content on the disintegration time, friability and hardness of paracetamol and orphenadrine citrate tablets at different storage conditions were investigated. These parameters were determined after one, four and sixteen weeks of storage

The use of starch, ethocel or CMC Na as binders gave unsatisfactory tablets because of their high friability. Unacceptably high disintegration times were obtained, particularly at higher storage temperatures when PVP was used. Capping and yellow spotting observed in gelatin formulations makes this binder unsuitable for use. Methocel granulations yielded satisfactory tablets with acceptable disintegration time, hardness and friability and were unaffected by storage at different conditions of temperature and humidity  相似文献   

14.
Hardness, disintegration and dissolution of compressed tablets were assessed by compressing tablets from granulations prepared by dry and wet granulation process of two sections and by composite wet granulation process. Modified USP XVIII apparatus for disintegration, rotating basket apparatus USP XVIII and constant circulation apparatus were employed for measuring dissolution. The constant circulation apparatus was used in the studies as only it proved to be sensitive to reflect the differences in the dissolution rates and was a close analog of physiological situation. Four types of tablets containing acetylsalicylic acid, codeine phosphate and propoxyphene hydrochloride were prepared. Tablets prepared by partial dry and wet granulation process did not show significant differences in the rates of dissolution as compared to those prepared by complete wet granulation process.  相似文献   

15.
Abstract

The disintegrant actions of croscarmellose type A (Ac-Di-Sol, FMC Corp.) and croscarmellose type B (CLD-2, Buckeye Cellulose Corp.) have been compared to that of corn starch in direct compression tablets in which microcrystalline cellulose (Avicel PH101, FMC Corp.) was the matrix. Two types of formulations were examined using either pyridoxine or hydrochlorothiazide as drug. The data clearly shows that both forns of croscarmellose are markedly superior to corn starch and are active at quite low concentrations. The CLD-2 may promote more rapid dissolution in some systems than Ac-Di-Sol.  相似文献   

16.
Context: Niacin (vitamin B3) is a micronized active pharmaceutical ingredient (API) with poor flow properties making the production of high-dose sustained-release tablets by direct compression a challenge.

Objective: We evaluated various wet granulation processes as a simple and efficient approach to obtain high-dose (500 and 1000?mg) niacin sustained-release lipid matrix tablets.

Materials and methods: A high melting-point lipid (Compritol® 888 ATO) was used as the sustained-release agent. Tablets were prepared by various wet granulation techniques, with different process parameters and binder concentrations to identify the optimal process conditions.

Results: A binder (PVP) was needed to increase particle bonding and tablet strength. Process parameters, such as spray rate and quantity of liquid, had only a slight impact on the properties of the granules and resultant tablets, in the presence of low binder concentrations. Increasing binder concentration improved granule wetting, resulting in significant granule growth and improved flow properties. Sustained-release over 12?h was observed for all the compacted granules, irrespective of the drug dose. The sustained-release kinetics for 1000?mg niacin matrix tablets with Compritol 888 produced with the identified optimal parameters were similar to those for the market reference product, Niaspan® FCT 1000?mg. The tablets were stable for up to six months when stored at 25 and 40?°C.

Conclusions: Wet granulation with Compritol 888 presents an effective approach to improve material flow and compressibility. High-dose lipid matrix tablets with sustained release profiles can be successfully produced.  相似文献   

17.
Spray granulation is commonly used to improve the flow of drug formulation powders by adding liquid binders. We have discovered a new granulation process whereby liquid binders are added as aqueous foam. Initial experiments indicate that foam granulations require less binder than spray granulations, less water is added to the powder mass, rates of addition of foam can be greater than rates of addition of sprayed liquids, and foam can be added in a single batch to the surface of the powder mass for incorporation at some later stage in the process. This new process appears to have no detrimental effects on granulate, tablet, or in vitro drug dissolution properties. In addition, the elimination of spray addition reduces the complexity of the process and avoids the plugging problems associated with spray nozzles. Several formulations were successfully scaled up from laboratory scale (1.5 kg) to pilot scale (15 kg). Process control was good and there was no detrimental effect on tablet and drug dissolution properties. This paper also proposes a working hypothesis of the mechanism by which foam granulation operates.  相似文献   

18.
The applicability of a 25 litre high shear mixer for moisture-activated dry granulation was examined. Microcrystalline cellulose, potato starch or a mixture of 50% m/m of each was used as moisture absorbing material. The effects of water content, wet massing time, moisture absorbing material and dry mixing time on the size distribution, and the compressibility of the granulations were investigated. Tablets were compressed on a single punch press from all the granulations and on a rotary press from a few of the granulations.

It was shown that the physical properties of the tablets were primarily affected by the water content, the moisture absorbing material, and the compression force. Tablets with low mass variation, high crushing strength, low friability, and short disintegration time were achieved with both tablet presses by using a mixture of microcrystalline cellulose and potato starch as moisture absorbing material.  相似文献   

19.
Aim: To investigate the release of hydrophobic and hydrophilic substances from tablets containing Pemulen and Carbopol as excipients. Method: The dissolution patterns of a hydrophobic (diazepam) and a hydrophilic active substance (midodrine-HCl) from different tablet formulations containing a nonmodified polyacrylic microgel (Carbopol 981 F) or a hydrophobically modified polyacrylic microgel (Pemulen®) have been studied. Possible differences in dissolution in phosphate buffer (pH 6.8) and in 0.1 M HCl between tablets produced using wet granulation and direct compression were also investigated. Results: Tablets produced by wet granulation had a greater effect on the release of active substance from the tablets. No major differences were observed in the release patterns of the hydrophilic substance midodrine-HCl from wet granulated tablets based on Carbopol and Pemulen. However, the release pattern of the more hydrophobic drug substance, diazepam, differed considerably between the two polymers. Wet granulation gave reproducible release patterns. The release patterns from the polymers differed considerably at pH 6.8 but were similar at low pH. Conclusions: The release of the diazepam from the hydrophobic polymer Pemulen was very slow, and the release was close to zero order.  相似文献   

20.
Abstract

The effect of moisture on the physical properties of ranitidine hydrochloride tablets prepared by direct-compression and by wet-granulation method using PVP or EC as binders was studied. Tablets adsorped moisture at 50 and 75 % RH (relative humidity) but lost moisture at 30% RH. Except storage at 75% RH, however, tablet volumes did not change significantly during the test period. Moisture sorption caused a decrease in strength of tablets except low humidity (30% RH). Also, the disintegration time of tablets showed a decrease at all conditions except 30% RH. Furthermore, generally dissolution profiles of tablets prepared by direct-compression and by ethyl cellulose remained unchanged. Changes in the binder type in the tablet formulations changed the water uptake properties and also the physical properties of tablets. Directly-compressed tablets were much susceptible to change caused by humidity than tablets prepared by wet-granulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号