共查询到20条相似文献,搜索用时 15 毫秒
1.
当布匹的背景信息复杂多变时,复杂花色布匹的瑕疵定位与分类较为困难.针对这一问题,文中提出基于级联卷积神经网络的复杂花色布匹瑕疵检测算法.首先,使用双路残差的骨干特征提取网络,在缺陷图和模板图上提取并融合特征.然后,设计密度聚类边框生产器,指导框架中区域候选网络的预检测框设计.最后,通过级联回归方法完成瑕疵的精确定位和分类.采用工业现场采集的布匹图像数据进行训练与预测,结果表明,文中算法的精准率和召回率较高. 相似文献
2.
提出一种基于模板匹配的单色布匹瑕疵检测算法,该检测算法首先存储待测布匹的无瑕疵模板图,并对模板图进行分块,然后对待测样本图进行相同的分块操作,进一步利用模板匹配方法对相同分块区域的样本图与模板图进行匹配查找,得到最优匹配图像.在匹配过程中,对模板图按照一定比例进行扩充,以提高匹配的准确性.最后将样本图与最优匹配图像进行差值对比实现布匹瑕疵检测.实验结果表明,算法弥补了传统Gabor算法高度依赖纹理的缺陷,提高了对于纹理模糊的单色布匹瑕疵检测准确率,检测效率与精度满足验布现场需求. 相似文献
3.
布匹缺陷检测是纺织行业生产过程中保障布匹质量的重要环节,计算机视觉技术的发展使得利用数字图像处理来检测布匹瑕疵成为大势所趋.针对布匹生产企业存在人工检测布匹瑕疵效率低、误检率和漏检率高的问题,结合布匹纹理比较统一的特征以及布匹瑕疵数据规模小的特点,提出一种基于图像增强和卷积神经网络(convolutional neur... 相似文献
4.
针对工业生产中布匹瑕疵自动化检测模型训练时缺少带瑕疵位置信息的瑕疵布匹图像数据集的问题,本文提出了一种以改进的部分卷积网络作为基本框架的带瑕疵位置信息的瑕疵布匹图像生成模型EC-PConv.该模型引入小尺寸瑕疵特征提取网络,将提取出的瑕疵纹理特征与空白mask拼接起来形成带有位置信息和瑕疵纹理特征的mask,然后以修复方式生成带有瑕疵位置信息的瑕疵布匹图像,另外,本文提出一种结合MSE损失的混合损失函数以生成更加清晰的瑕疵纹理.实验结果表明,与最新的GAN生成模型相比,本文提出的生成模型的FID值降低了0.51;生成的瑕疵布匹图像在布匹瑕疵检测模型中查准率P和MAP值分别提高了0.118和0.106.实验结果表明,该方法在瑕疵布匹图像生成上比其他算法更稳定,能够生成更高质量的带瑕疵位置信息的瑕疵布匹图像,可较好地解决布匹瑕疵自动化检测模型缺少训练数据集的问题. 相似文献
5.
为了对布匹瑕疵进行快速准确的检测,提出了一种基于边缘检测的新算法。利用布匹图像中瑕疵与正常纹理产生的纹理边缘,将布匹瑕疵作为正常纹理的边缘检测出来。利用Sobel算子的方向性,分别对织物疵点在水平和垂直方向进行增强,计算出RGB图像中水平与垂直方向的梯度后进行边缘检测,通过图像融合和二值化完成最终检测。实验证明,该方法准确性高并且检测速率大大提高。 相似文献
6.
7.
纺织行业一直在我国国民经济中占据十分重要的位置.传统的布匹瑕疵识别检测一般都是通过人工检测的方式,但是随着布匹检测数量的不断增加,人工识别效率也会随之下降,且准确率得不到保证.针对这个问题提出了使用Python语言,卷积神经网络DenseNet模型、Keras框架,创建和训练深度学习神经网络,设计与实现了一款布匹瑕疵系统,从而使得布匹检测更加高效、便捷. 相似文献
8.
布匹瑕疵检测是纺织工业中产品质量评估的关键环节, 实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义. 在实际布匹生产过程中, 布匹瑕疵在形状、大小及数量分布上存在不平衡问题, 且纹理布匹复杂的纹理信息会掩盖瑕疵的特征, 加大布匹瑕疵检测难度. 本文提出基于深度卷积神经网络的分类不平衡纹理布匹瑕疵检测方法(Detecting defects in imbalanced texture fabric based on deep convolutional neural network, ITF-DCNN), 首先建立一种基于通道叠加的ResNet50卷积神经网络模型(ResNet50+)对布匹瑕疵特征进行优化提取; 其次提出一种冗余特征过滤的特征金字塔网络(Filter-feature pyramid network, F-FPN)对特征图中的背景特征进行过滤, 增强其中瑕疵特征的语义信息; 最后构造针对瑕疵数量进行加权的MFL (Multi focal loss)损失函数, 减轻数据集不平衡对模型的影响, 降低模型对于少数类瑕疵的不敏感性. 通过实验对比, 提出的方法能有效提升布匹瑕疵检测的准确率及定位精度, 同时降低了布匹瑕疵检测的误检率和漏检率, 明显优于当前主流的布匹瑕疵检测算法. 相似文献
9.
织物瑕疵检测是控制织物产品质量的重要步骤,传统的织物瑕疵检测方法检测效率低,劳动强度大.因此,针对传统检测方法存在的问题,提出一种基于卷积神经网络(CNN)的分类算法用于实现织物瑕疵检测.网络是在VGG16的基础上进行减枝,通过优化网络参数实现最优结果.首先,由于织物瑕疵大小差别较大,提出将瑕疵边缘作为检测的目标,这样... 相似文献
10.
瑕疵检测是布匹质量控制的重要环节。为了使检测算法具有较高的通用性和检测精度,提出了一种基于稀疏编码的双尺度布匹瑕疵检测算法,综合了大尺度下检测稳定性高和小尺度下检测敏感性高的优点。首先,采用一种小规模过完备字典的训练方法得到大小尺度下的字典;其次,利用检测图像块在字典上的投影提取检测特征;最后,利用距离融合方法综合大小尺度下的检测结果。小规模完备字典的采用以及对大尺度下的检测进行下采样,克服了因引入双尺度而造成计算量太大的缺点。实验采用德国TILDA布匹样本库,实验结果表明,该算法能有效地检测平纹布、格子布、条纹布上的瑕疵,综合检测率达到95.9%,并且计算量适中,能够满足工业实时检测的要求,具有实际应用的价值。 相似文献
11.
针对传统Gabor优化选择方法用于布匹瑕疵检测时准确率低、鲁棒性差的缺点,提出了改进的优化选择方法,通过瑕疵图像与标准图像Gabor滤波后分块子图均值差平方和的代价函数实现优化选择。设置一组不同方向和尺度的Gabor滤波器并提取标准图像滤波后相关参数,通过改进的优化选择方法实现滤波后瑕疵图像的最优选择,利用迭代式阈值分割对最优滤波后图像进行二值分割,根据分割后图像的像素信息检测是否含有瑕疵并输出瑕疵信息。实验验证该方法,并与传统优化选择方法对比分析,结果表明该方法运算量较少,且检查性能高,可满足在线检测要求。 相似文献
12.
为了实现布匹表面瑕疵的在线视觉检测,利用Gabor小波函数与神经网络的结合,提出了一种有效提取Gabor滤波最优参数的方法。该方法通过离线构建Gabor小波神经网络,结合Levenberg-Marquardt算法优化得到最优解,重构无瑕疵的布匹图像,以削弱在线检测时布匹纹理对瑕疵检测的影响,从而能够于在线实时监测过程中凸显布匹瑕疵,最终从融合图像中得到瑕疵区域。通过对霉点、断经、油污、破洞四种常见的布匹瑕疵图像进行检测,表明该方法能够满足对瑕疵的实时分割要求。 相似文献
13.
布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求. 相似文献
14.
15.
针对并行深度卷积神经网络算法在大数据环境下存在冗余特征计算过多、卷积运算性能不足和参数并行化合并效率低等问题,提出了基于Winograd卷积的并行深度卷积神经网络优化算法。首先,该算法提出基于余弦相似度与归一化互信息的特征过滤策略,通过先筛选后融合的方式消除了通道间对于冗余特征的计算,以此解决了冗余特征计算过多的问题;然后,结合MapReduce提出了并行Winograd卷积策略,通过使用并行化Winograd卷积运算替换传统卷积运算的方式来提升卷积运算的性能,以此解决了卷积运算性能不足的问题;最后,提出基于任务迁移的负载均衡策略,通过动态负载迁移的方式来均衡集群中各节点之间的负载,降低了集群总体的平均反应时长,以此解决了参数并行化合并效率低的问题。实验表明,WP-DCNN算法显著降低了DCNN在大数据环境下的训练代价,而且对并行DCNN的训练效率也有大幅提升。 相似文献
16.
针对嵌入式平台下卷积神经网络运行速度慢,无法快速手势检测的问题,提出一种基于SSD的卷积神经网络的嵌入式手势检测算法,该算法显著提高了手势检测速度,并保持了高精度。首先通过一种预处理方法,对原来的手势数据库进行5倍扩展;然后对SSD算法的基础神经网络层进行卷积因子分解,使用MobileNet神经网络获得了在CPU下的3倍加速;最后通过改变输入图片大小同时改变网络结构,减少了算法的计算复杂度。实验结果表明所提算法在两个数据集上的平均精度均值(Mean Average Precision,mAP)下降2.7%,但是在Qualcomm SnapDragon 820平台下检测一张图片时间可达到0.233 s,检测速度提高40倍以上。 相似文献
17.
18.
针对布匹瑕疵检测,在传统局部二值模式(Local Binary Pattern, LBP)与局部二值模式方差(LBP Variance,LBPV)的基础上,提出一种基于多尺度分块局部二值模式方差(Multi-Scale Block Local Binary Patterns Variance, MBLBPV)的检测算法。首先,采用适当尺度大小的子区域灰度均值代替单像素灰度值,提取LB P特征,以降低噪声影响;然后,融合图像区域对比度信息,并将其作为编码值的权重,提取图像MBLBPV特征,并基于该特征实现瑕疵的检测。实验结果表明,相对于传统方法,MBLBPV抗噪力强、检测正确率更高。 相似文献
19.
20.
针对翻录语音攻击说话人识别系统,危害合法用户的权益问题,提出了一种基于卷积神经网络(CNN)的翻录语音检测算法。首先,通过提取原始语音与翻录语音的语谱图,并将其输入到卷积神经网络中,对其进行特征提取及分类;然后,搭建了适应于检测翻录语音的网络框架,分析讨论了输入不同窗移的语谱图对检测率的影响;最后,对不同偷录及回放设备的翻录语音进行了交叉实验检测,并与现有的经典算法进行了对比。实验结果表明,所提方法能够准确地判断待测语音是否为翻录语音,其识别率达到了99.26%,与静音段梅尔频率倒谱系数(MFCC)算法、信道模式噪声算法和长时窗比例因子算法相比,识别率分别提高了约26个百分点、21个百分点和0.35个百分点。 相似文献