首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microcapsules of terbutaline sulfate with cellulose acetate butyrate and ethylcellulose were prepared using an emulsion-solvent evaporation technique. The in vitro dissolution of terbutaline sulfate was studied using the USP rotating basket method. As the polymer to drug ratio increased, the microcapsule size distribution shifted to the smaller size and the release of terbutaline sulfate decreased. The release of terbutaline sulfate was independent of the dissolution medium pH for both polymers. The release kinetics from the microcapsules was dependent on the polymer type and polymer to drug ratio. The release of terbutaline sulfate from cellulose acetate butyrate and ethylcellulose microcapsules formulated with a 1:1 polymer to drug ratio was complex and could not be differentiated between the square-root of time and first-order release models. However, the square-root of time model was followed by microcapsules formulated with a 2:1 or a 3:1 cellulose acetate butyrate to drug ratio. When the ethylcellulose to drug ratio was increased to 2:1 the square-root of time model was followed. At an ethylcellulose to drug ratio of 3:1 the release kinetics could not be differentiated between the Hixon-Crowell and first-order release models. The T50% from ethylcellulose microcapsules was decreased when the microcapsules were compressed into tablets with the addition of AvicelR/EmcompressR (2:1) or AvicelR.  相似文献   

2.
Abstract

This work examines the release of diclofenac sodium from ethylcellulose (EC) microcapsules made up of different drug to polymer ratios. The release process was found to follow the Higuchi square root equation and not the zero-order or first order equations. However, for drug to polymer ratio of 1:1, a critical time (θ) was reached beyond which the release rate was lower than that predicted on the basis of the Higuchi square root equation. Dissolution experiments in 0.1N HCL revealed that less than 1.5% of the encapsulated drug was released in 6 h. This finding indicates the suitability of the EC microcapsules for enteric-coated preparations. The in vitro release of diclofenac sodium from microcapsules of different drug to polymer ratios was compared with that from a commercial sustained-release product. A distinct similarity between the release profile of the commercial product with that obtained for the 1:2 drug to polymer microcapsules was noted. The in vivo work included determination of the serum drug profile following oral administration of the microcapsules and the commercial product to rabbits. The obtained serum concentration time profile of the EC microcapsules exhibited a sustained-release pattern similar to the commercial product and consistent with the in vitro results.  相似文献   

3.
Sustained-release coated pellets containing terbutaline sulfate (TS) 1.8% w/w were prepared. The suitable core formulation that gave round-shape TS pellets was preformulated and was composed of microcrystalline cellulose:lactose 38.61%:57.92%, hydroxypropyl cellulose (HPC-M®) 1.67%, and water 40%, respectively. The core pellets containing active drug were coated with various amounts of ethylcellulose (EC) and a combination of EC/HPC-M polymers. The effects of fluidized bed polymeric film coats on drug release were studied in vitro. The dissolution characteristics were also investigated. The release of the active drug decreased as the amount of EC increased. This may be due to water-insoluble EC film, leading to decreased permeability in water. In the case of the combination of EC/HPC-M, the release of the active drug increased as the amount of HPC-M in the coating solution increased. Since HPC-M is a water-soluble polymer, it may be suggested that formation of pores were increased in the coating layer. Among five coating formulas in this study, formulation 1 (F1) (at 1.1% EC concentration) shows a similar dissolution profile to Bricanyl Durules®; however, lag time for the release occurred. In conclusion, the formulation that gave an insignificant release profile (p <. 01) when compared with commercial product was the capsule containing F1 (at 1.1% EC concentration) mixed with uncoated pellets at a ratio of 7:1, and the release was found to be reproducible.  相似文献   

4.
Abstract

Disopyramide was microencapsulated with cellulose acetate butyrate (CAB) using an emulsion-solvent evaporation process. Drug dissolution from microcapsules was studied in both simulated gastric (SGF) and intestinal fluids (SIF) under sink conditions using the USP paddle method. There was no significant difference between drug release into SIF and SGF. As the CAB to drug ratio decreased from 3:1 to 2:1 at constant polymer mass, the drug release rate increased and the T50Y0 decreased from 2.3 hr to 0.3 hr for 303 pm particles. Dissolution T50% increased from 0.4 hr to 2 hr when the mean microcapsule size was increased from 153 to 428 μm (26% drug loading). The addition of acetone to the external phase during preparation shifted the size distribution toward larger particles, but resulted in a higher drug dissolution rate for a given particle size range. A shift to smaller particles was obtained upon increasing the concentration of surfactant. The dissolution profiles were described by the Higuchi and Baker-Lonsdale equations for drug release from spherical matrices up to 90% of the drug release.  相似文献   

5.
This work examines the release of diclofenac sodium from ethylcellulose (EC) microcapsules made up of different drug to polymer ratios. The release process was found to follow the Higuchi square root equation and not the zero-order or first order equations. However, for drug to polymer ratio of 1:1, a critical time (θ) was reached beyond which the release rate was lower than that predicted on the basis of the Higuchi square root equation. Dissolution experiments in 0.1N HCL revealed that less than 1.5% of the encapsulated drug was released in 6 h. This finding indicates the suitability of the EC microcapsules for enteric-coated preparations. The in vitro release of diclofenac sodium from microcapsules of different drug to polymer ratios was compared with that from a commercial sustained-release product. A distinct similarity between the release profile of the commercial product with that obtained for the 1:2 drug to polymer microcapsules was noted. The in vivo work included determination of the serum drug profile following oral administration of the microcapsules and the commercial product to rabbits. The obtained serum concentration time profile of the EC microcapsules exhibited a sustained-release pattern similar to the commercial product and consistent with the in vitro results.  相似文献   

6.
Disopyramide was microencapsulated with cellulose acetate butyrate (CAB) using an emulsion-solvent evaporation process. Drug dissolution from microcapsules was studied in both simulated gastric (SGF) and intestinal fluids (SIF) under sink conditions using the USP paddle method. There was no significant difference between drug release into SIF and SGF. As the CAB to drug ratio decreased from 3:1 to 2:1 at constant polymer mass, the drug release rate increased and the T50Y0 decreased from 2.3 hr to 0.3 hr for 303 pm particles. Dissolution T50% increased from 0.4 hr to 2 hr when the mean microcapsule size was increased from 153 to 428 μm (26% drug loading). The addition of acetone to the external phase during preparation shifted the size distribution toward larger particles, but resulted in a higher drug dissolution rate for a given particle size range. A shift to smaller particles was obtained upon increasing the concentration of surfactant. The dissolution profiles were described by the Higuchi and Baker-Lonsdale equations for drug release from spherical matrices up to 90% of the drug release.  相似文献   

7.
Development of terbutaline sulfate sustained-release coated pellets   总被引:5,自引:0,他引:5  
Sustained-release coated pellets containing terbutaline sulfate (TS) 1.8% w/w were prepared. The suitable core formulation that gave round-shape TS pellets was preformulated and was composed of microcrystalline cellulose:lactose 38.61%:57.92%, hydroxypropyl cellulose (HPC-M) 1.67%, and water 40%, respectively. The core pellets containing active drug were coated with various amounts of ethylcellulose (EC) and a combination of EC/HPC-M polymers. The effects of fluidized bed polymeric film coats on drug release were studied in vitro. The dissolution characteristics were also investigated. The release of the active drug decreased as the amount of EC increased. This may be due to water-insoluble EC film, leading to decreased permeability in water. In the case of the combination of EC/HPC-M, the release of the active drug increased as the amount of HPC-M in the coating solution increased. Since HPC-M is a water-soluble polymer, it may be suggested that formation of pores were increased in the coating layer. Among five coating formulas in this study, formulation 1 (F1) (at 1.1% EC concentration) shows a similar dissolution profile to Bricanyl Durules; however, lag time for the release occurred. In conclusion, the formulation that gave an insignificant release profile (p < .01) when compared with commercial product was the capsule containing F1 (at 1.1% EC concentration) mixed with uncoated pellets at a ratio of 7:1, and the release was found to be reproducible.  相似文献   

8.
Abstract

The mechanism of release of clofibrate from microcapsules prepared in a gelatin-sodium sulfate system has been investigated. A theoretical model was developed to explain the release pattern of the drug from the microcapsules. It was shown that the release of the drug followed four stages giving individual zero-order profiles. The overall release from the thin-walled microcapsules showed greater deviation from the zero-order kinetics but followed the square-root of the time plots. Microcapsules having thicker walla approximated overall zero-order release but deviated from the square-root of time plots. The effect of hardening on the release profiles and possible explanations for the differences observed in the release of clofibrate from the thin-walled and thick-walled microcapsules are discussed.  相似文献   

9.
Nifedipine and its solid dispersions in polyvinyl-pyrrolidone-microcrystalline cellulose (PVP-MCC) and hydroxypropyl cellulose - microcrystalline cellulose (HPC-MCC) were microencapsulated with cellulose acetate by an emulsion solvent evaporation method. The microcapsules are spherical, discrete and free flowing. Nifedipine as such and its microcapsules gave very slow release because of its highly crystalline nature and poor solubility. Solid dispersion in PVP-MCC and HPC-MCC gave fast and rapid dissolution of nifedipine. When these solid dispersions were microencapsulated, a slow, controlled and complete release over a period of 12 hours was observed from the resulting microcapsules. Drug release depended on the proportion of PVP-MCC and HPC-MCC in the solid dispersions used as core, coat: core ratio and size of the microcapsules and the release was pH independent. Drug release was governed by diffusion rate and followed first-order kinetics.  相似文献   

10.
The mechanism of release of clofibrate from microcapsules prepared in a gelatin-sodium sulfate system has been investigated. A theoretical model was developed to explain the release pattern of the drug from the microcapsules. It was shown that the release of the drug followed four stages giving individual zero-order profiles. The overall release from the thin-walled microcapsules showed greater deviation from the zero-order kinetics but followed the square-root of the time plots. Microcapsules having thicker walla approximated overall zero-order release but deviated from the square-root of time plots. The effect of hardening on the release profiles and possible explanations for the differences observed in the release of clofibrate from the thin-walled and thick-walled microcapsules are discussed.  相似文献   

11.
Abstract

Microcapsules of theophylline with ethyl cellulose were prepared by coacervation technique using cabosil® (silicon dioxide) as separant. Tablets were prepared from microcapsules, microcapsules + theophylline fat embedded granules, and microcapsules and hydroxypropyl methylcellulose 4000 (HPMC). Release was studied in vitro by the rotating basket method. Prolonged release of theophylline was observed from microcapsules with no drug dumping. The release from microcapsules was of first-order whereas that from all the tablet formulation was diffusion controlled according to the Higuchi model. Good correlation was found between release rate and core:wall ratio for all the systems. Decrease in hardness of tablets made from microcapsules alone decreased the release rate, indicating damage of microcapsules during compression. The tablets compressed from fat embedded granules, microcapsules with fat embedded granules, and microcapsules with HPMC gave a desired release for a 74 hour sustained release preparation.  相似文献   

12.
Abstract

Different viscosity grades ethylcellulose coated captopril microcapsules were prepared using temperature induced coacervation method from cyclohexane containing 2% Tween 80. Microcapsules were compressed directly into tablets. In vitro dissolution was carried out in 0.1 N HCl at 37°C using the rotating basket method. Release from tablets of all the batches was extensively prolonged in comparison to the respective microcapsules. The longest time for 70% drug release was shown by microcapsules (55min) and tablets (378 min) of the batch E-2. Release rate constants, correlation, determination and regression coefficients were calculated for the first-order, zero-order and Higuchi's equations. The best fit of release kinetics with the highest correlation and determination coefficients was achieved with the first-order followed by Higuchi's plot.  相似文献   

13.
Abstract

Microspheres with 60% w/w drug loading were prepared by the solvent-evaporation method using cellulose acetate butyrate as the encapsulating polymer and micronized anhydrous theophylline as the core material. Four different binders - microcrystalline cellulose, glyceryl palmito-stearate, glyceryl stearate and glyceryl behenate were used to compress three different particle sizes of microspheres. Comparison of the in vitro drug dissolution profiles revealed that drug release was fastest from all the microspheres compressed with microcrystalline cellulose as the binder followed by those compressed with glyceryl palmitostearate, glyceryl stearate and glyceryl behenate.  相似文献   

14.
Abstract

Metronidazole was microencapsulated with ethylcellulose by a phase separation method to develop a sustained release dosage form. Polyisobutylene (PIB) was used as a protective colloïd to control the particule size and the drug release of the microcapsules. The influence of PIB on microcapsules charateristics depends on the core-wall ratio, the molecular weight of PIB and the concentration of PIB.  相似文献   

15.
Abstract

Cellulose acetate butyrate microcapsules containing propranolol were prepared by emulsion non-solvent addition method. The effects on drug release of different polyethylene glycols (PEG), various concentrations of PEG 4000, and particle size of the drug to be encapsulated were investigated. In vitro dissolution of microcapsules in simulated intestinal fluid and buffers at different pH was also studied. PEGs were found to increase drug release for this system. The pH dissolution profiles of the microcapsules indicated that dissolution was slightly pH dependent during the first 8 hours of dissolution.  相似文献   

16.
Abstract

Nifedipine and its solid dispersions in hydroxypropyl methyl cellulose-microcrystalline cellulose (HPMC-MCC) were microencapsulated with Eudragit RL PM by an emulsion solvent evaporation method. The microcapsules are spherical, discrete, free flowing, and covered with a continuous coating of the polymer. XRD and DTA indicated the presence of nifedipine in solution form in the solid dispersions and their microcapsules. No chemical interaction between nifedipine and excipients in the microcapsules was observed. Nifedipine as such and its microcapsules gave very slow release because of its highly crystalline nature and poor solubility. Solid dispersion in HPMC-MCC gave fast and rapid dissolution of nifedipine. When these solid dispersions were microencapsulated a slow, controlled, and complete release over a period of 12 hr was observed from the resulting microcapsules. Drug release depended on the proportion of HPMC-MCC in the solid dispersion used as a core, coat, core ratio, and size of the microcapsules. Release was independent of pH and ionic strength. Drug release was governed by diffusion rate and followed first-order kinetics.  相似文献   

17.
Abstract

In this study ethylcellulose was evaluated as a carrier for preparation of prolonged release acetaminophen tablets. Solid dispersions containing three levels of ethylcellulose and acetaminophen (1:3; 1:1; 3:1) were prepared by the solvent method. Also physical mixtures at the same level of ethylcellulose and acetaminophen were prepared. Systems composed of solid dispersion or physical mixture containing the equivalent weight of 50 mg acetaminophen, Lactose fast-flo as diluent and 1% magnesium stearate as lubricant were compressed into tablets and tested for dissolution. The dissolution data showed that the drug release decreased as the level of ethylcellulose increased in the solid dispersion formulations. The drug release from tablets prepared with solid dispersion followed the diffusion controlled model for inert porous matrix, while the drug release from tablets prepared with physical mixture followed the first-order kinetic model.  相似文献   

18.
Abstract

Adriamycin hydrochloride was microencapsulated with ethylcellulose by a phase separation method to develop a prolonged release dosage form. Polyisobutylene (PIB) was used as a coacervation-inducing agent to control the particle size and drug release rate of the resultant microcapsules. With increasing the concentration of PIB (1 to 3 %) the average diameter of the microcapsules decreased, due to the fact that the microcapsules were discreted to a single microcapsule. At low concentration of PIB, the resultant microcapsules were agglomerated, which resulted in increasing the size. The microcapsules prepared with PIB 2 % prolonged desirably the drug release from the microcapsules. A little size effects of the microcapsules on the drug release rate was found for the microcapsules with PIB 2 % and 3 %.  相似文献   

19.
Abstract

Microcapsules containing aminophylline cores in ethylcellulose walls have been prepared and tableted. The mechanical properties and the release characteristics of tablets obtained by direct compression at six different pressures (ranging from 265 to 1060 Kg.cm?2) were studied. The release rate of the drug from tableted microcapsules increased with the increase of compression force and was higher than from uncompressed microcapsules, indicating that some damage of the polymeric wall occurred during the compression process. Among the various excipients tested as binding and protective agents, paraffined starch (a mixed system appositely set up) gave the best results, producing the slowest drug release rate. No important effect on drug release rate was found by changing the size of the microcapsules.  相似文献   

20.
Abstract

Chlorpromazine microspheres were prepared by an emulsion solvent evaporation technique using polycaprolactone and cellulose acetate butyrate as the matrix. The fluidity of the polymer solution was easily adjusted by use of mixtures of two polymers and thus provided a practical means to control the microsphere size. The In Vitro release pattern was easily changed by changing the ratios of these two polymers. An increase in polycaprolactone content of the polymer microsphere matrix brought about an increase in the release rate. Drug loading had no predictable effect on the dissolution rate, but smaller microspheres gave more rapid drug release due to the greater surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号