首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7?±?12.9 to 423?±?15.9?nm while zeta potential values varied from ?21.7?±?0.90 to ?22.7?±?0.85?mV. The loading capacity varied from 17.9?±?1.21 to 34.1?±?1.16%. DSC, FT–IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p?in vivo performance of AC.  相似文献   

2.
Abstract

Commercially available domperidone orodispersible tablets (ODT) are intended for immediate release of the drug, but none of them have been formulated for sustained action. The aim of the present research work was to develop and evaluate orodispersible sustained release tablet (ODT-SR) of domperidone, which has the convenience of ODT and benefits of controlled release product combined in one. The technology comprised of developing sustained release microspheres (MS) of domperidone, followed by direct compression of MS along with suitable excipients to yield ODT-SR which rapidly disperses within 30?seconds and yet the dispersed MS maintain their integrity to have a sustained drug release. The particle size of the MS was optimized to be less than 200?μm to avoid the grittiness in the mouth. The DSC thermograms of MS showed the absence of drug-polymer interaction within the microparticles, while SEM confirmed their spherical shape and porous nature. Angle of repose, compressibility and Hausner’s ratio of the blend for compression showed good flowability and high percent compressibility. The optimized ODT-SR showed disintegration time of 21?seconds and matrix controlled drug release for 9?h. In-vivo pharmacokinetic studies in Wistar rats showed that the ODT-SR had a prolonged MRT of 11.16?h as compared 3.86?h of conventional tablet. The developed technology is easily scalable and holds potential for commercial exploitation.  相似文献   

3.
Context: Conventional sustained dosage form of ranitidine hydrochloride (HCl) does not prevent frequent administration due to its degradation in colonic media and limited absorption in the upper part of GIT.

Objectives: Ranitidine HCl floating tablet was formulated with sublimation method to overcome the stated problem.

Methods: Compatibility study for screening potential excipients was carried out using Fourier transform infrared spectroscopy (FT-IR) and differential scanning chromatography (DSC). Selected excipients were further evaluated for optimizing the formulation. Preliminary screening of binder, polymer and sublimating material was based on hardness and drug release, drug release with release kinetics and floating lag time with total floatation time, respectively. Selected excipients were subjected to 32 factorial design with polymer and sublimating material as independent factors. Matrix tablets were obtained by using 16/32” flat-faced beveled edges punches followed by sublimation.

Results: FT-IR and DSC indicated no significant incompatibility with selected excipients. Klucel-LF, POLYOX WSR N 60?K and l-menthol were selected as binder, polymer and sublimating material, respectively, for factorial design batches after preliminary screening. From the factorial design batches, optimum concentration to release the drug within 12?h was found to be 420?mg of POLYOX and 40?mg of l-menthol. Stability studies indicated the formulation as stable.

Conclusion: Ranitidine HCl matrix floating tablets were formulated to release 90% of drug in stomach within 12?h. Hence, release of the drug could be sustained within narrow absorption site. Moreover, the dosage form was found to be floating within a fraction of second independent of the pH of media ensuring a robust formulation.  相似文献   

4.
The emerging new fixed dose combination of metformin hydrocholride (HCl) as sustained release and glipizide as immediate release were formulated as a bilayer matrix tablet using hydroxy propyl methyl cellulose (HPMC) as the matrix-forming polymer, and the tablets were evaluated via in vitro studies. Three different grades of HPMC (HPMC K 4M, HPMC K 15M, and HPMC K 100M) were used. All tablet formulations yielded quality matrix preparations with satisfactory tableting properties. In vitro release studies were carried out at a phosphate buffer of pH 6.8 with 0.75% sodium lauryl sulphate w/v using the apparatus I (basket) as described in the United States Pharmacopeia (2000). The release kinetics of metformin were evaluated using the regression coefficient analysis. There was no significant difference in drug release for different viscosity grade of HPMC with the same concentration. Tablet thus formulated provided sustained release of metformin HCl over a period of 8 hours and glipizide as immediate release.  相似文献   

5.
Context: Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30–50 mg), ethylcellulose (2–4 mg), microcrystalline cellulose (5–20 mg) and Aerosil® (5–12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated. Objective: The objectives of this study were (i) to select a nicorandil-loaded peroral tablet that matched the in vitro dissolution profile of once-daily commercial sustained-release tablet, and (ii) to compare the in vivo sustaining/controlling efficacy of the selected peroral tablet with that of its commercial counterparts. Results and Discussion: Because the nicorandil (10 mg)-loaded tablet prepared based on F-IX composition (50 mg HPMC, 4 mg ethylcellulose, 10 mg MCC and 3 mg glidant and lubricant) showed a release profile comparable to that of the Nikoran® OD SR tablet release profile, the tablet with this composition was considered to be the optimized/selected formulation and, therefore, was subjected to stability study and in vivo study in rabbits. Despite of the higher Cmax and AUC values obtained with the optimized tablet, there was no sign of difference between the optimized- and Nikoran® OD SR- tablets following a single-dose crossover oral administration into rabbit. Conclusion: The optimized tablet could be used as an alternative to the commercial once-daily tablet.  相似文献   

6.
Abstract

The use of soluble cocrystal for delivering drugs with low solubility, although a potentially effective approach, often suffers the problem of rapid disproportionation during dissolution, which negates the solubility advantages offered by the cocrystal. This necessitates their robust stabilization in order for successful use in a tablet dosage form. The cocrystal between carbamezepine and succinic acid (CBZ-SUC) exhibits a higher aqueous solubility than its dihydrate, which is the stable form of CBZ in water. Using this model system, we demonstrate an efficient and material-sparing tablet formulation screening approach enabled by intrinsic dissolution rate measurements. Three tablet formulations capable of stabilizing the cocrystal both under accelerated condition of 40?°C and 75% RH and during dissolution were developed using three different polymers, Soluplus® (F1), Kollidon VA/64 (F2) and Hydroxypropyl methyl cellulose acetate succinate (F3). When compared to a marketed product, Epitol® 200?mg tablets (F0), drug release after 60?min from formulations F1 (~82%), F2 (~95%) and F3 (~95%) was all higher than that from Epitol® (79%) in a modified simulated intestinal fluid. Studies in albino rabbits show correspondingly better bioavailability of F1–F3 than Epitol.  相似文献   

7.
For the first time, nucleation kinetics, crystal growth and agglomeration of calcium oxalate monohydrate (COM) are studied as a crystal growth inhibitor with and without Nigella Sativa(NS) extract. The induction period was determined under different supersaturation ratios ranging from 1.63 to 4.51 at 37°C using the conductivity method. Based on the classical homogeneous nucleation theory; the critical nucleation parameters were evaluated at higher supersaturation ratio. The calculated surface energy was increased from 7.97?mJ/m2 without additive to 10.31?mJ/m2 with NS extract. However, the nucleation rate at a supersaturation ratio of 3.26 corresponding to 5.44 with the NS extract was decreased from 3.9?×?1029 nuclei/cm3.s (without additive) to 1.3?×?1029 nuclei/cm3.s with NS extract addition. The number of molecules required for the formation of a stable nucleus was calculated with and without NS extract at different supersaturation ratios. The crystallite sizes of the formed crystals without and with the additive are 93 and 51?nm, respectively. Scanning electron microscopy (SEM) photomicrographs show the formation of small crystals and less aggregated with the NS inhibitor compared with the baseline (without the inhibitor). This study can help us with a clear understanding of the inhibition mechanism of an aqueous NS extract on COM crystals.  相似文献   

8.
The main objectives of this study were to improve the aqueous solubility and to modify in vitro dissolution profile of hydrophobic drug using self-emulsifying drug delivery systems (SEDDS). SEDDS were formulated using Capmul PG-12, Cremophor RH 40 and Tween 20 at different weight ratios and incorporated with Cinnarizine. The drug incorporation into pre-concentrate and drug solubility in phosphate buffer (pH 7.2) were investigated. In addition, the mean droplet size and drug release profile of the SEDDS were also determined. The drug incorporation was over 120?mg per 0.5?g pre-concentrate regardless of the composition of the formulations. The solubility of Cinnarizine in phosphate buffer (pH 7.2) was at least 1500 μM in the SEDDS. Formulations with only 10% w/w Capmul PG-12 were less than 20?nm in mean diameter while those produced with at least 20% w/w Capmul PG-12 were more than 100?nm regardless of the ratios of Cremophor RH 40 to Tween 20. SEDDS showed a significant increase of the mean percentage drug release than pure drug (p?<?0.0001). In general, the SEDDS with 30% w/w of Capmul PG-12 provided the greatest enhancement in drug solubility in phosphate buffer as well as rapid drug release despite forming larger droplets upon emulsification. The combination of Capmul PG-12, Tween 20 and Cremophor RH 40 can produce SEDDS which can be used as an alternative dosage form for poorly water soluble drug.  相似文献   

9.
Context: The bitter taste of drug is masked by the exchange of ionized drugs with counter ions of ion exchange resin, forming “resinate”. Cyclodextrin reduces the unpleasant taste and enhances the drug solubility by encapsulating drug molecules into its central cavity.

Objective: Oral disintegrating tablets (ODTs) using the combination of ion exchange resin and cyclodextrin was developed, to mask the bitter taste and enhance drug dissolution.

Methods: Meloxicam (MX) was selected as a model drug. Formulations containing various forms of MX (free drug, MX-loaded resin or resinate, complexes of MX and 2-hydroxypropyl-β-cyclodextrin (HPβCD) or MX/HPβCD complexes, and a mixture of resinate and MX/HPβCD complexes) were made by direct compression. The ODTs were evaluated for weight variation, thickness, diameter, hardness, friability, disintegration time, wetting time, MX content, MX release, degree of bitter taste and stability.

Results and discussion: The tablet hardness was ~3?kg/in2, and the friability was <1%. Tablets formulated with resinate and the mixture of resinate and MX/HPβCD complexes disintegrated rapidly within 60?s, which is the acceptable limit for ODTs. These results were corresponded to the in vivo disintegration and wetting times. However, only tablets containing the mixture of resinate and MX/HPβCD complexes provided complete MX dissolution and successfully masked the bitter taste. In addition, this tablet was stable at least 6 months.

Conclusions: The combination of ion exchange resin and cyclodextrin could be used in ODTs to mask the bitter taste and enhance the dissolution of drugs that are weakly soluble in water.  相似文献   

10.
Context: Orally disintegrating tablets (ODTs) with sustained release profiles are a new generation of ODTs called orally disintegrating/sustained release tablets (ODSRTs), which are convenient in use and able to slowly release drugs to maintain effective blood concentrations over a prolonged period of time. Ketoprofen, one of non-steroidal anti-inflammatory drugs, is an ideal model drug for ODSRTs.

Methods: We designed a simple two-step process to develop novel ketoprofen orally disintegrating/sustained release tablets (KODSRTs). Firstly, sustained release ketoprofen fine granules were developed by spray drying the aqueous dispersions composed of Eudragit RS-30D, Starch 1500 and PEG 6000. The optimal parameters of spray drying were 100°C for inlet air temperature and 1.5 mL/min for feed rate. Subsequently, the obtained granules were directly compressed into KODSRTs after mixing with lactose, mannitol and a superdisintegrant, crosslinked polyvinylpyrrolidone (PVPP). The characteristics of KODSRTs, especially their potential for extended drug release, were evaluated.

Results: Results of an in vitro release test demonstrated that KODSRTs could slowly release ketoprofen for 24 h after disintegrating within 30 s. Extended release properties of KODSRTs were decided by the ketoprofen sustained release fine granules in tablets. Besides, the disintegration time of KODSRTs depended on the percentage of PVPP in tablets. In vivo pharmacokinetic studies in beagles also showed that KODSRTs possessed a significantly extended release profile compared with ketoprofen normal capsules.

Conclusion: KODSRTs were successfully prepared using a simple two-step process: spray drying and direct compression.  相似文献   

11.
为了研究水基钻井液用碳酸钙微米颗粒在水溶液中的分散状况,使用扫描电镜对碳酸钙微米颗粒的微观形貌进行了分析,而后在不同搅拌速度、不同p H、不同超声时间等物理分散因素下研究了碳酸钙微米颗粒在水溶液中的粒径分布与Zeta电位变化,又利用不同的分散剂对碳酸钙微米颗粒进行了化学分散.结果表明:长期放置的碳酸钙微米颗粒会发生团聚,中径达6~7μm;采用物理方法分散时,搅拌速度越高,分散效果越好,在10 000 r/min时可使中径达3~4μm;超声作用则使碳酸钙微米颗粒粒径先减小后增大,中径最小可达2.6μm,p H小于10时,粒径随p H的增大而增大,大于10时则随p H的增大而减小;化学分散剂对提高碳酸钙微米颗粒的分散具有显著的作用,其中,无机类分散剂六偏磷酸钠可使碳酸钙微米粒子中径达到1.5μm,并且Zeta电位绝对值显著提高.  相似文献   

12.
Objective: While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API.

Materials and methods: Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data.

Results: Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength.

Conclusions: Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.  相似文献   


13.
A new mineral–polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.  相似文献   

14.
The aim of this study was to evaluate the monolithic osmotic tablet system (MOTS) containing a solid dispersion with the practically water-insoluble drug nifedipine in vitro and in vivo. In the drug release study in vitro, the release profiles of this system had almost zero-order kinetics. The influences of tablet formulation variables, sizes of the delivery orifice, membrane variables, and values of pH in the dissolution medium on nifedipine release from MOTS have been investigated. The results provided evidence that the tablet core played an important role in MOTS. While orifice sizes and membrane variables affected the nifedipine release rate, MOTS was independent of the dissolution medium. The appropriate orifice size was found to be in the range of 0.5-1.0 mm. The coating membrane incorporating hydrophilic polyethylene glycol (PEG) formed a porous structure. The human pharmacokinetics and relative bioavailability of MOTS containing nifedipine were compared with a commercial Adalat® osmotic tablet system containing an equivalent dose of nifedipine following an oral single dose of 30 mg given to each of 11 healthy volunteers in an open, randomized crossover study in vivo. The relative bioavailability for MOTS was 112%. There was no statistically significant difference in the pharmacokinetic parameters between two dosage forms. It is concluded that the monolithic osmotic tablet controlled release system is feasible for a long-acting preparation as a once-daily treatment.  相似文献   

15.
ABSTRACT

Pellets containing drugs of different properties were prepared in a Rotoprocessor in order to study changes in the formulation process and resulting pellet characteristics. Diltiazem hydrochloride, diclofenac sodium, and theophylline were chosen as model drugs. Pellet size distribution, sphericity, density, hardness, friability, and repose angle were determined using standard methods. The amount of water as a wetting agent necessary for successful pellet formulation was observed for each sample and changed depending on drug solubility, concentration, and particle size. The pelletization of freely soluble diltiazem hydrochloride required 24.8–23.1% of the wetting agent and its amount decreased as the drug concentration increased. The demand for water in the formulation of theophylline pellets was 31.0–34.4% and it increased with increasing drug concentration. The pellet samples containing both drugs were easy to prepare. However, the cohesion of micronized diclofenac sodium particles negatively influenced both the pellet size distribution and the formulation process itself. When the drug concentration exceeded 40%, it was not possible to produce pellets of an appropriate size and the process was not reproducible.  相似文献   

16.
为探讨无机纳米材料在钻井液中的应用现状,利用自然沉降和紫外-可见分光光度法优化了分散剂对纳米碳酸钙的分散改性条件,讨论了分散剂种类、分散剂用量、分散时间和温度等因素对纳米碳酸钙分散效果及分散稳定性的影响.研究表明:优化条件下制得的分散体系润湿性和分散性有很大改善;添加改性和未改性纳米碳酸钙基浆均具有一定的降滤失性,二者表观黏度、塑性黏度和动切力均表现为降低趋势;泥浆流变性能得到一定改善,改性纳米碳酸钙较未改性纳米碳酸钙颗粒的封堵效应更好.  相似文献   

17.
Pyridostigmine bromide (PB), a highly hygroscopic drug was selected as the model drug. A sustained-release (SR) tablet prepared by direct compression of wet-extruded and spheronized core pellets with HPMC excipients and exhibited a zero-order sustained release (SR) profile. The 23 full factorial design was utilized to search an optimal SR tablet formulation. This optimal formulation was followed zero-order mechanism and had specific release rate at different time intervals (released % of 1, 6, and 12 hr were 15.84, 58.56, and 93.10%). The results of moisture absorption by Karl Fischer meter showed the optimum SR tablet could improve the hygroscopic defect of the pure drug (PB). In the in vivo study, the results of the bioavailability data showed the Tmax was prolonged (from 0.65 ± 0.082 hr to 4.83 ± 1.60 hr) and AUC0-t (from 734.88 ± 230.68 ng/ml.hr to 1153.34 ± 488.08 ng/ml.hr) and was increased respectively for optimum PB-SR tablets when compared with commercial immediate release (IR) tablets. Furthermore, the percentages of in vitro dissolution and in vivo absorption in the rabbits have good correlation. We believe that PB-SR tablets designed in our study would improve defects of PB, decrease the frequency of administration and enhance the retention period of drug efficacy in vivo for personnel exposed to contamination situations in war or terrorist attacks in the future.  相似文献   

18.
Preparation and evaluation of SEDDS and SMEDDS containing carvedilol   总被引:4,自引:0,他引:4  
A new self-emulsifying drug delivery system (SEDDS) and self-microemulsifying drug delivery system (SMEDDS) have been developed to increase the solubility, dissolution rate, and, ultimately, oral bioavailability of a poorly water soluble drug, carvedilol. Ternary phase diagrams were used to evaluate the self-emulsification and self-microemulsfication domains. The self-emulsification time following introduction into an aqueous medium under gentle agitation was evaluated. The minimum self-emulsification time was found at a Tween 80 content of 40%. The particle size distribution and ζ-potential were determined. Benzoic acid had a dual function, it improved the self-emulsification performance of SEDDS and SMEDDS in 0.1 N HCl and lead to a positively charged emulsion. The in vitro dissolution rate of carvedilol from SEDDS and SMEDDS was more than two-fold faster compared with that from tablets. The developed SEDDS formulations significantly improved the oral bioavailability of carvedilol significantly, and the relative oral bioavailability of SEDDS compared with commercially available tablets was 413%.  相似文献   

19.
The aim of this investigation is the management of rheumatoid arthritis (RA) by developing methotrexate-loaded calcium phosphate nanoparticles (MTX-CAP-NP) and to evaluate pharmacokinetic and pharmacodynamic behavior in adjuvant induced arthritis model. The nanoparticles were synthesized by wet precipitation method and optimized by Box-Behnken experimental design. MTX-CAP-NPs were characterized by TEM, FTIR, DSC and XRD studies. The particle size, zeta potential and entrapment efficiency of the optimized nanoparticles were found to be 204.90?±?64?nm, ?11.58?±?4.80?mV, and 88.33?±?3.74%, respectively. TEM, FTIR, DSC and XRD studies revealed that the developed nanoparticles were nearly spherical in shape and the crystalline structure of CAP-NP was not changed after MTX loading. The pharmacokinetic studies revealed that MTX-CAP-NP enhanced bioavailability of MTX by 2.6-fold when compared to marketed formulation (FOLITRAX-10). Under pharmacodynamic evaluation, arthritic assessment, radiography and histopathology studies revealed that CAP has ability to regenerate cartilage and bone therefore, together with MTX, MTX-CAP-NPs have shown significant reduction in disease progression. The overall work demonstrated that the developed nanodelivery system was well tolerated and more effective than the marketed formulation.  相似文献   

20.
对高性能碳纤维原丝性能有重要影响的聚合物粒径均匀度问题目前尚未有人研究过。本研究率先采用沉淀聚合合成高分子量PAN,根据其微观形貌,应用第四统计力学群子统计参数理论研究了聚合物的粒径分布与粒径均匀度的关系,表明粒径均匀度与混合溶剂无关,而与混合溶剂的配比有关,DMSO含量越少,粒径分布越均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号