首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
采用真空熔炼和热压烧结技术制备了Al掺杂P型Bi_(0.5)Sb_(1.5)Te_3热电材料。样品的物相结构和形貌分别采用X射线衍射(XRD)和扫描电镜(SEM)进行表征。结果表明,Al_xBi_(0.5)Sb_((1.5-x))Te_3(x=0,0.04,0.08,0.12)块体材料的XRD图谱与Bi_(0.5)Sb_(1.5)Te_3的XRD图谱对应一致。该复合材料的组织致密,且层状结构特征明显。Al部分替代Sb后,优化了载流子浓度,从而提高了材料的电导率。在室温附近所有掺杂样品的热导率都低于Bi_(0.5)Sb_(1.5)Te_3样品的热导率,从而有效改善了材料的热电性能。其中,Al_xBi_(0.5)Sb_((1.5-x))Te_3(x=0.04)在室温附近表现了最低的热导率,320 K时获得最大ZT值(为1.0)。  相似文献   

2.
通过化学镀和氢气还原法制备Bi_(0.5)Sb_(1.5)Te_3/Sn核壳结构粉末,再使用放电等离子烧结的方法制备成块体。经试验分析发现,随着Sn含量的上升,Seebeck系数和电导率均先上升后下降,含有1%(质量分数)Sn的Bi_(0.5)Sb_(1.5)Te_3/Sn块体合金的Seebeck系数上升至278μV/K,电导率略低于未镀层样品,为475.6 S/cm。因此,室温下的功率因子从24.6 W·cm~(-1)·K~(-2)提高到35.4 W·cm~(-1)·K~(-2),这证明样品的电传输性能得到提高。此外,随着Sn含量的上升,Bi_(0.5)Sb_(1.5)Te_3/Sn块体合金的密度及显微硬度不断升高,力学性能得到提高。  相似文献   

3.
Ag掺杂的赝两元合金(PbTe)1—x(SnTe)x热电性能   总被引:1,自引:0,他引:1  
通过对Ag元素掺杂的赝两元合金(PbTe)1-x(SnTe)x(0≤x≤0.4)热电性能进行研究发展,处于本征态的PbTe合金电导率对掺杂较为敏感。但当摩尔分数增大时,赝两元合金(PbTe)1-x(SnTe)x电导率随掺杂量的增大受到抑制,这在高温情况下尤为显著。当温度低于约423K时,掺杂量对PbTe合金的Seebeck系数影响不大;但当温度大于423K时,PbTe合金的Seebeck系数随掺杂量而增大。掺杂量越大,摩尔分数越高,同一合金的Seebeck系数变化越小。热电优值计算表明,掺杂0.02mol%的合金系较适宜于制作成分递变的热电材料(FGM)。  相似文献   

4.
采用直流4电极法探索P型Bi_(0.4)Sb_(1.6)Te_3+5%的Te合金的熔体结构转变温度范围,在此基础上,采用不同熔体处理工艺得到母合金,随后采用球磨、SPS烧结技术制备块体材料。结果表明,经历熔体结构转变后,烧结试样的电导率有明显提升,而Seebeck系数略有降低,故其功率因子增加。由于熔体结构转变试样具有更多的晶界以及晶体结构缺陷,增强声子的散射,使合金的热导率显著降低。因此经历熔体结构转变的试样具有更优的热电性能,且在120℃时ZT(热电材料性能参数)值最大,为1.17。  相似文献   

5.
用机械合金法制备了Bi2 Te3和Bi0 .5Sb1 .5Te3两种热电材料。XRD分析表明两种材料分别在球磨 1 75h和 31 5h后完全合金化。机械合金化合金粉末冷压后在不同温度烧结并测量了热电性能 ,其中Bi0 .5Sb1 .5Te3材料480℃烧结样的最高Seebeck系数约为 2 0 0 μV/K。  相似文献   

6.
以高纯原始粉末为原料,采用机械合金化(MA)制备了合金粉末.利用扫描电镜(SEM)、X射线衍射仪(XRD)和激光粒度分析仪等研究了合金粉末的微观形貌和晶粒尺寸及平均粒径在不同Cr含量和不同机械合金化时间下的变化规律.选择机械合金化40 h和50 h的合金粉末在950℃进行放电等离子体烧结(SPS)制备合金样品,然后使用天平和维氏硬度计分别测量合金样品的致密度和维氏硬度.结果表明:随着球磨时间的增加,Fe-Cr合金粉末平均粒径先下降,后在40 h出现上升点,然后下降;Fe-Cr-Y203合金粉末平均粒径先下降后上升.合金粉的晶粒尺寸都随球磨时间增加而不断减小.合金样品致密度均达96%,硬度随Cr含量增加逐渐增大.  相似文献   

7.
以高纯原始粉末为原料,采用机械合金化(MA)制备了合金粉末。利用扫描电镜(SEM)、X射线衍射仪(XRD)和激光粒度分析仪等研究了合金粉末的微观形貌和晶粒尺寸及平均粒径在不同Cr含量和不同机械合金化时间下的变化规律。选择机械合金化40 h和50 h的合金粉末在950℃进行放电等离子体烧结(SPS)制备合金样品,然后使用天平和维氏硬度计分别测量合金样品的致密度和维氏硬度。结果表明:随着球磨时间的增加,Fe-Cr合金粉末平均粒径先下降,后在40 h出现上升点,然后下降;Fe-Cr-Y_2O_3合金粉末平均粒径先下降后上升。合金粉的晶粒尺寸都随球磨时间增加而不断减小。合金样品致密度均达96%,硬度随Cr含量增加逐渐增大。  相似文献   

8.
选取球磨-退火-SPS的方法制备了填充式方钴矿CoSb_3金属间化合物,研究了在Yb填充下,Co位Ni替代与Sb位Te替代对CoSb_3热电性能的影响。测试了300~800K的温度范围内,其热导率、电导率及赛贝克系数的值。结果表明,其热导率以及赛贝克系数的绝对值均随替代原子的增加而减小,而电导率随替代原子的增加而增加。在Yb填充及Ni与Te共同替代后,化合物获得了较好的热电优值,其热导率在700K时仅为2.2W·m-1·K-1,化合物Yb_(0.3)Co_(3.5)Ni_(0.5)Sb_(11.5)Te_(0.5)在750K热电性能最佳,ZT值为0.75。  相似文献   

9.
采用合金设计、真空熔炼、快速凝固、球磨制粉、冷压成形和常压烧结工艺,制备了Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料,采用XRD、SEM和ZEM-3热电测试系统等表征热电材料晶体结构、微观形貌和热电性能,研究Cu、S掺杂的n型Bi_(2)Te_(2.7)Se_(0.3)热电材料热电性能机理。结果表明:Cu_(y)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料晶体结构为R-3m空间群斜方晶系的六面体层状结构;掺杂Cu的Cu_(y)Bi_(2)Te_(2.7)Se_(0.3)热电材料,形成Cui间隙缺陷和Bi′Te反位缺陷,随着载流子(电子)浓度增加,载流子迁移率降低,电导率显著增大;掺杂S的Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料,生成化学键健能较Bi-Te强的Bi-S,抑制反位缺陷Bi′Te形成,少数(空穴)载流子浓度减小,同时增强声子对声子散射和点缺陷对声子散射,从而使晶格热导率和双极扩散热导率降低,总热导率明显降低,抑制塞贝克系数的减少;Cu、S共掺杂的协同作用,n型Cu_(y)Bi_(2)Te_(2.62-z)SzSe_(0.3)热电材料电导率增大,而热导率基本不变,由此ZT值和功率因子显著提高;在300~400 K温度范围内,Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)的电导率约为7.0×10^(4)S/m,塞贝克系数约为220μV/K,功率因子约为2.4 m W/(m·K^(2)),热电优值(ZT值)约为1.0。Cu_(0.03)Bi_(2)Te_(2.62)S_(0.08)Se_(0.3)热电材料可广泛应用于低温尤其室温条件下的热电制冷器件和温差发电电池。  相似文献   

10.
利用高能球磨方法对Cu-10Cr-0.5Al2O3(质量分数,%)混合粉末进行预处理,采用电场活化烧结技术对球磨粉末进行烧结,运用XRD、SEM、硬度、断裂强度和电导率等测试方法研究球磨时间对Cu-10Cr-0.5Al2O3复合粉末烧结前后组织和性能的影响.结果表明随着球磨时间的增加,Cu晶粒更加细化,第二相分布更加弥散,以致烧结材料的强度和硬度逐渐增大,球磨20h后,烧结样品的强度和硬度分别达到952MPa和285HV;由于晶粒细化、高度弥散的第二相以及铜相的晶格畸变加强对电子的散射作用,烧结试样的电导率也随球磨时间的延长而逐渐下降,球磨20h后,烧结样品的电导率下降到51%(IACS).  相似文献   

11.
采用高能球磨-热压烧结法制备了7075铝合金,研究了粉末种类(元素粉和氮气雾化合金粉)、球磨时间(5、10、15、20、25 h)及烧结温度(590、610、630℃)对合金组织和室温力学性能的影响。结果表明:随球磨时间的延长,合金粉或元素粉的颗粒不断发生片状化、碎化和冷焊,并逐渐细化,最后趋于球化,且颗粒大小趋于稳定。其中当球磨工艺为转速350 r/min、球料比为20∶1、球磨20 h时,元素粉的颗粒尺寸细小且粒度均匀。在相同的高能球磨-热压烧结工艺下,高能球磨元素粉制备的7075铝合金硬度、抗压强度和压缩率较氮气雾化合金粉烧结7075合金分别提高80.7%、50.96%和1.49%。  相似文献   

12.
采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。  相似文献   

13.
采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。  相似文献   

14.
采用商用FeNi30及FeNi50合金粉为原料通过机械合金化(MA)合成纳米晶Invar合金(FeNi36)粉体,研究了不同球磨时间的Invar合金粉体的物相组成、显微组织结构与形貌特征,探讨其合金化机制。结果表明:球磨初期(5~10 h),微锻造和冷焊过程使合金粉体呈扁平形复合层状结构,同时FeNi50中的Ni原子逐渐向FeNi30中扩散,发生成分均匀化;球磨40 h后,已形成了成分均匀的α'-Fe(Ni)固溶体,其平均晶粒尺寸约为12 nm。此时,机械合金化合成的Invar合金粉体呈球形,表面光滑,继续球磨,大颗粒粉体表面出现裂纹,并碎裂,导致粉体细化。  相似文献   

15.
《轻金属》2021,(5)
本文对AZ31镁合金进行微弧氧化改性处理,来获得具有较高耐磨性的陶瓷涂层,旨在提高其耐磨性。在硅酸盐体系下引入稀土盐Er(NO_3)_3掺杂,研究Er(NO_3)_3掺杂量的变化对改性涂层相组成、微观结构、表面粗糙度、显微硬度以及摩擦因数的影响作用。结果表明:在硅酸盐电解液中未掺杂和掺杂Er(NO_3)_3后,镁合金涂层由MgO、MgSiO_3和Mg_2SiO_4等晶相组成,掺杂Er(NO_3)_3后涂层中MgSiO_3相含量略有增加。微弧氧化涂层具有"火山口状"的微孔结构。随着Er(NO_3)_3掺杂量增加,涂层表面的微孔数量呈现出先增后减的趋势。当Er(NO_3)_3掺杂量超过4.5‰时,微孔尺寸明显减小。当Er(NO_3)_3浓度过高时,涂层中某些区域出现少量腐蚀坑。掺杂Er(NO_3)_3的涂层,其显微硬度有所增加,增幅在11.6%~50.2%,摩擦因数略有降低。  相似文献   

16.
采用高能球磨机械合金化法制备了Au-20%Sn合金,分析了合金物相、组织和硬度随球磨时间的变化规律,探讨了合金塑性与合金组织及制备工艺的关系。结果表明:采用高能球磨机械合金化法可以制备Au-20%Sn合金;随球磨时间的增加,Au-20%Sn的合金化程度增加,组织中的金属间化合物逐渐增多,最终基本上为δ相和ζ′相;合金的硬度随球磨时间的延长逐渐升高,并在球磨60min后获得最高硬度104.2HV,然后开始下降;球磨后的合金粉末在190℃×2h的烧结过程中发生了不同程度的再结晶和晶粒长大,再结晶程度随球磨时间的延长而增加,导致烧结后合金硬度在球磨时间超过60min后反而下降。  相似文献   

17.
SPS法制备n-型Ag掺杂四元Ag-Bi-Se-Te 合金及其热电性能   总被引:1,自引:0,他引:1  
采用放电等离子烧结(SPS)方法制备Ag掺杂四元Ag-Bi-Se-Te合金,并分析研究其热电性能.结果表明:掺杂Ag后,合金AgxBi(2-x)Se0.3Te2.7(x=0.005~0.04)的Seebeck系数均为负值,说明材料属于n-型半导体;当温度大约在428.0K时,x=0.04合金的Seebeck系数绝对值(|a|)出现最大值,其值为1.80×10-4V·K-1,比三元合金Bi2Se0.3Te2.7的最大值增大约16%;材料电导率随Ag含量的增加而下降.如果采用相同方法制备且成分按(Bi2Te3)0.9-(Bi2-xAgxSe3)0.1(x=0~0.4)设计的材料热扩散系数进行估算,当温度在477.0 K时,合金AgxBi(2-x)Se0.3Te2.7(x=0.04)的ZT值出现最大值,其值为0.75,比典型三元合金Bi2Se0.3Te2.7的最大值增大约0.09.  相似文献   

18.
应用Judd-Ofelt方法对真空烧结的Er,Yb共掺氧化钇透明陶瓷的光谱学参数进行了研究。通过实验方法测得了不同Er~(3+)掺杂量的Er,Yb共掺氧化钇透明陶瓷的室温吸收光谱和折射率,并结合Judd-Ofelt方法计算了不同Er~(3+)掺杂浓度时的光谱学参数。随着Er~(3+)掺杂量的增加,?_2从5.41减小至3.36。?_4和?_6的范围分别为0.96~1.29和0.64~0.72。品质因子X_(4/6)的范围为1.46~1.88,显著优于Er掺杂氧化钇单晶中的品质因子。随着Er~(3+)掺杂量从0.5 at%增加至5 at%,~4I_(13/2)能级的寿命从8.7 ms下降至7.8 ms。计算结果表明,低掺杂浓度的Er,Yb共掺氧化钇透明陶瓷是一种有潜力的近红外激光材料。  相似文献   

19.
采用机械合金化法制备Cr含量为8%、12.5%、20%(质量分数)的纳米W-Cr合金粉,对不同球磨时间粉末进行X射线衍射分析,以确定物相、晶粒尺寸及微应变,并采用扫描电子显微镜观察粉末形貌及粒度的变化。结果表明,采用机械合金化法可以制备不同Cr含量的纳米W-Cr合金粉。随着Cr含量的增加,制备纳米W-Cr合金粉所需球磨时间越长,其中W-8%Cr、W-12.5%Cr和W-20%Cr粉末的最佳球磨时间分别为72、84和96 h,晶粒尺寸小于30 nm。随着球磨时间的增加,晶粒尺寸不断减小,微应变逐渐增加,使常温下Cr在W中的固溶度增加,形成W的过饱和固溶体。Cr含量不同的W-Cr粉末完全合金化均经过4个阶段。  相似文献   

20.
采用机械合金化的方法制备了Ti_(44)Ni_(47)Nb_9形状记忆合金粉末,采用X射线衍射(XRD)、扫描电镜(SEM)分析和能量色散光谱(EDS)等分析了球磨工艺参数对粉末非晶度和颗粒尺寸的影响,得出了最佳的球磨工艺参数。分析了球磨转速、球料比以及球磨时间等参数对机械合金化过程的影响规律。结果表明:合金粉末在球磨60 h时已出现大部分非晶相,100 h时已接近完全非晶化。机械合金化制备的Ti_(44)Ni_(47)Nb_9合金粉末尺寸随球磨时间的增加先迅速减小后在60 h左右趋于稳定,在球磨速率不变的条件下,随着球磨时间增长,粉末的平均粒径大幅度减小,且由棱角分明的不规则体逐渐变化为球形体,在球磨初期(10~30 h)存在颗粒团聚的现象,随球磨时间延长(30 h后)该现象逐渐消失。从粉末颗粒尺寸、分布状况、圆滑程度等方面分析考虑:在球磨时间为100 h的条件下,当球磨转速为200 r/min、球料比为10∶1时机械合金化效果最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号