首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of the present work was to evaluate polyvinyl alcohols (PVAs) as a mucoadhesive polymer for mucoadhesive buccal tablets prepared by direct compression. Various polymerization degree and particle diameter PVAs were investigated for their usability. The tensile strength, in vitro adhesive force, and water absorption properties of the tablets were determined to compare the various PVAs. The highest values of the tensile strength and the in vitro adhesive force were observed for PVAs with a medium viscosity and small particle size. The optimal PVA was identified by a factorial design analysis. Mucoadhesive tablets containing the optimal PVA were compared with carboxyvinyl polymer and hydroxypropyl cellulose formulations. The optimal PVA gives a high adhesive force, has a low viscosity, and resulted in relatively rapid drug release. Formulations containing carboxyvinyl polymer had high tensile strengths but short disintegration times. Higher hydroxypropyl cellulose concentration formulations had good adhesion forces and very long disintegration times. We identified the optimal characteristics of PVA, and the usefulness of mucoadhesive buccal tablets containing this PVA was suggested from their formulation properties.  相似文献   

2.
Objective: To obtain controlled release of captopril in the stomach, coated, mucoadhesive donut-shaped tablets were designed.

Materials and methods: Donut-shaped tablet were made of different ratios of diluents to polymer or combination of polymers by direct compression method. Top and bottom portions of the tablet were coated with water-insoluble polymer followed by mucoadhesive coating. Time of water penetration, measurement of tensile strength, mucoadhesion studies (static ex vivo and ex vivo wash-off) were taken into account for characterization of respective films. In vitro study has been performed at different dissolution mediums. Optimized batches were also prepared by wet granulation. Stability studies of optimized batches have been performed.

Results: The results of time of water penetration and tensile strength indicated positive response against water impermeation. Mucoadhesive studies showed that film thickness of 0.12?mm was good for retention of tablet at stomach. At pH 1.2, optimized batch of tablet made with hydroxypropyl methyl cellulose (HPMC) E15 as binder showed 80% w/w drug release within 4–5?h with maximum average release of 97.49% w/w. Similarly, maximum average releases of 96.36% w/w and 95.47% w/w were obtained with nearly same dissolution patterns using combination of HPMC E5 and HPMC E50 and sodium salt of carboxy methyl cellulose (NaCMC) 500–600 cPs instead of HPMC E15. The release profiles in the distilled water and pH 4.5 followed the above pattern except deviation at pH 6.8. Stability studies were not positive for all combinations.

Conclusion: Coated, mucoadhesive donut-shaped tablet is good for controlled release of drug in the stomach.  相似文献   

3.
Abstract

Dimenhydrinate (DMH)-loaded buccal bioadhesive films for the prevention and treatment of motion sickness were prepared and optimized. This study examines the rate of drug release from the films for prolonged periods of time to reduce or limit the frequency of DMH administration. Based on preliminary studies using various polymers and concentrations, hydroxyethylcellulose (2.5, 3.0, and 3.2%), and xanthan gum (2.8%) were chosen as matrix polymers. The films were analyzed with respect to their mechanical, physicochemical, bioadhesive, swelling, and in-vitro release properties. In in-vivo pharmacokinetic studies, xanthan gum-based DMH buccal film was associated with significantly increased DMH plasma levels between 1 h and 5 h after DMH dosing when compared with an oral drug solution. The area under the curve AUC0–7 h value of the mucoadhesive buccal film was two-fold higher than the oral DMH solution. Histological analysis revealed that DMH films cause mild morphological and inflammatory changes in rabbit buccal mucosa. The DMH buccal film is effective for approximately 7 h, thus representing an option for single-dose antiemetic therapy. This dosage regimen could be particularly beneficial for chain travelers who travel for long periods of time.  相似文献   

4.
The purpose of this experimental work was the development of hydrophilic–lipophilic matrix tablets for controlled release of slightly soluble drug represented here by diclofenac sodium (DS). Drug dissolution profile optimization provided by soluble filler was studied. Matrix tablets were based on cetyl alcohol as the lipophilic carrier, povidone as the gel-forming agent, and common soluble filler, that is lactose or sucrose of different particle size. Physical properties of tablets prepared by melt granulation and drug release in a phosphate buffer of pH 6.8 were evaluated. In vitro studies showed that used filler type, filler to povidone ratio and sucrose particle size influenced the drug release rate. DS dissolution profile could be changed within a wide range from about 50% per 24 hours to almost 100% in 10 hours. The release constant values confirmed that DS was released from matrices by the diffusion and anomalous transport. The influence of sucrose particle size on the drug release rate was observed. As the particle size decreased, the drug release increased significantly and its dissolution profile became more uniform. Soluble fillers participated in the pore-forming process according to their solubility and particle size. Formulations containing 100 mg of the drug, 80 mg of cetyl alcohol, 40 mg of povidone, and 80 mg of either lactose or sucrose (particle size 250–125 μm) were considered optimal for 24-hour lasting dissolution of DS.  相似文献   

5.
The aim of this research was to develop chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis, which was fabricated through an environmental friendly process. Mucoadhesive films increase the advantage of higher efficiency and drug localization in the affected region. In this research, mucoadhesive films, for the release of hydrocortisone sodium succinate, were prepared using different ratios of chitosan, gelatin and keratin. In the first step, chitosan and gelatin proportions were optimized after evaluating the mechanical properties, swelling capacity, water uptake, stability, and biodegradation of the films. Then, keratin was added at different percentages to the optimum composite of chitosan and gelatin together with the drug. The results of surface pH showed that none of the samples were harmful to the buccal cavity. FTIR analysis confirmed the influence of keratin on the structure of the composite. The presence of a higher amount of keratin in the composite films resulted in high mechanical, mucoadhesive properties and stability, low water uptake and biodegradation in phosphate buffer saline (pH?=?7.4) containing 104?U/ml lysozyme. The release profile of the films ascertained that keratin is a rate controller in the release of the hydrocortisone sodium succinate. Finally, chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate can be employed in dental applications.  相似文献   

6.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

7.
This investigation deals with the development of buccal tablets containing chlorhexidine (CHX), a bis-bis-guanide with antimicrobial and antiseptic effects in the oral cavity, and able to adhere to the buccal mucosa to give local controlled release of drug. A mucoadhesive formulation was designed to swell and form a gel adhering to the mucosa and controlling the drug release into the oral cavity.

Some batches of tablets were developed by direct compression, containing different amounts of hydroxypropylmethylcellulose (HPMC) and carbomer; changing the amount ratio of these excipients in formulations, it is possible easily modulate the mucoadhesive effect and release of drug. The in vitro tests were performed using the USP 26/NF paddle apparatus, a specifically developed apparatus, and a modified Franz diffusion cells apparatus. This last method allows a simultaneous study of drug release rate from the tablets and drug permeation through the buccal mucosa.

Similar tests have also been carried out on a commercial product, Corsodyl gel®, in order to compare the drug release control of gel with respect to that of the mucoadhesive tablet, as a formulation for buccal delivery of CHX. While the commercial formulation does not appear to control the release, the formulation containing 15% w/w methocel behaves the best, ensuring the most rapid and complete release of the drug, together with a negligible absorption of the active agent as required for a local antiseptic action in the oral cavity.  相似文献   

8.
The purpose of this study was to compare the in vitro release and the in vivo pharmacokinetics of bilayer tablets with the conventional dispersible tablets of nimesulide. The tablets were administered to beagle dogs and the plasma levels of nimesulide were determined by high-performance liquid chromatography-MS/MS. The pharmacokinetic parameters were calculated using a noncompartmental model. The bilayer tablets showed a biphasic in vitro release pattern with initial burst release and sustained release following the quasi-Fickian diffusion-based release mechanism. The Cmax, tmax, mean residence time (MRT), and area under the curve from 0 to 36 h were 10.8 ± 4.2 μg/mL, 2.3 ± 1.0 h, 6.7 ± 2.1 h, 81.5 ± 26.7 μg·h/mL for the bilayer tablets and 14.8 ± 5.8 μg/mL, 2.7 ± 0.8 h, 5.6 ± 0.9 h, 95.4 ± 44.2 μg·h/mL for the dispersible tablets. Compared with the dispersible tablets, the bilayer tablets have lower Cmax, similar tmax, and longer MRT. The aforementioned pharmacokinetic parameters, especially the MRT demonstrated to be valuable for evaluating the biphasic characteristics. This study provides a promising in vivo evaluation method for the bilayer tablets with biphasic release pattern.  相似文献   

9.
REQUIP XL, prolonged release formulation of ropinirole hydrochloride (RH) in market, could release ropinirole constantly and showed satisfactory therapeutic effect and good compliance. REQUIP XL was composed of more than 10 kinds of excipients and prepared by Geomatrix technology, which was complex and laborious. The purpose of this study was to obtain a dosage form of RH with similar in vitro release profile and bioequivalence in vivo compared to REQUIP XL. Osmotic pump tablet combined with fast release phase was selected as the delivery system of RH and similar release curves were obtained in different media. The tablets were also administered to beagle dogs and the pharmacokinetic parameters were calculated using a non-compartmental model. Cmax, tmax, mean residence time (MRT), and area under the curve from 0 to 24?h (AUC0–24) were 3.97?±?0.53?ng/mL, 3.58?±?0.49?h, 8.29?±?0.93?h, and 35.20?±?8.11?ng/mL???h for ropinirole osmotic pump tablets (ROPT) and 4.15?±?1.07?ng/mL, 2.92?±?0.49?h, 7.84?±?1.09?h, and 34.34?±?10.06?ng/mL???h for REQUIP XL. The log-transformed mean Cmax and AUC0–24 of ROPT were about 92.15% and 102.49% relative to that of REQUIP XL, respectively. The 90% confidence intervals of Cmax and AUC0–24 for ROPT were 75.69–115.31% and 88.89–122.30%, respectively. So it could be concluded that ROPT was uniform with REQUIP XL both in vitro and in beagles and the release profiles of Geomatrix technology may be obtained by osmotic pump combined with fast release technology.  相似文献   

10.
The objectives of this work was preparation and evaluation of the mucoadhesive elementary osmotic pump tablets of trimetazidine hydrochloride to achieve desired controlled release action and augmentation of oral drug absorption. The drug-loaded core tablets were prepared employing the suitable tableting excipients and coated with polymeric blend of ethyl cellulose and hydroxypropyl methylethylcellulose E5 (4:1). The prepared tablets were characterized for various quality control tests and in vitro drug release. Evaluation of drug release kinetics through model fitting suggested the Fickian mechanism of drug release, which was regulated by osmosis and diffusion as the predominant mechanism. Evaluation of mucoadhesion property using texture analyzer suggested good mucoadhesion potential of the developed osmotic systems. Solid state characterization using Fourier-transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffraction spectroscopy confirmed the absence of any physiochemical incompatibilities between drug and excipients. Scanning electron microscopy analysis showed the smooth surface appearance of the coated tablets with intact polymeric membrane without any fracture. In vivo pharmacokinetic studies in rabbits revealed 3.01-fold enhancement in the oral bioavailability vis-à-vis the marketed formulation (Vastarel MR®). These studies successfully demonstrate the bioavailability enhancement potential of the mucoadhesive elementary osmotic pumps as novel therapeutic systems for other drugs too.  相似文献   

11.
The present investigation is aimed at development and characterization of sumatriptan succinate orodispersible tablets (ODTs) prepared by freeze drying technology. The tablet excipients were screened and the composition was optimized based on parameters which involved general appearance, tablet size and shape, uniformity of weight, mechanical properties, surface pH, moisture analysis, drug content, wetting time, in vitro and in vivo disintegration time. Furthermore, fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron micrograph of cross-section of the tablet and in vitro dissolution studies were performed. Studies revealed that formulation containing gelatin–mannitol (3.75% w/v and 3.5% w/v, respectively) with camphor as a volatile pore forming agent exhibited superior properties with disintegration time of less than 10?s. Furthermore, in vitro release studies revealed 90% release of drug from developed dosage form within 10?min, thus suggesting rapid drug dissolution followed by faster onset of action, which forms a strong rationale for development of ODTs of sumatriptan succinate. The developed technology is simple, which involves few steps and can be easily scaled up. Thus, it holds enormous potential for commercial exploitation.  相似文献   

12.
The objective of this study was to design and evaluate azilsartan osmotic pump tablets. Preformulation properties of azilsartan were investigated for formulation design. Azilsartan osmotic pump tablets were prepared by incorporation of drug in the core and subsequent coating with cellulose acetate and polyethylene glycol 4000 as semi-permeable membrane, then drilled an orifice at the center of one side. The influence of different cores, compositions of semipermeable membrane and orifice diameter on azilsartan release were evaluated. The formulation of core tablet was optimized by orthogonal design and the release profiles of various formulations were evaluated by similarity factor (f2). The optimal formulation achieved to deliver azilsartan at an approximate zero-order up to 14?h. The pharmacokinetic study was performed in beagle dogs. The azilsartan osmotic pump tablets exhibited less fluctuation in blood concentration and higher bioavailability compared to immediate-release tablets. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the tablets. In summary, azilsartan osmotic pump tablets presented controlled release in vitro, high bioavailability in vivo and a good in vitro-in vivo correlation.  相似文献   

13.
The effect of cellulose ether polymer mixtures, containing both hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC K15M or K100M), on ketoprofen (KTP) release from matrix tablets was investigated. In order to evaluate the compatibility between the matrix components, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray powder diffraction (XRPD) experiments were performed. The results evidence the absence of significant intermolecular interactions that could eventually lead to an incompatibility between the drug and the different excipients. Formulations containing mixtures of polymers with both low and high viscosity grades were prepared by a direct compression method, by varying the polymer/polymer (w/w) ratio while keeping the drug amount incorporated in the solid dispersion constant (200?mg). The hardness values of different matrices were found within the range 113.8 to 154.9 N. HPLC analysis showed a drug content recovery between 99.3 and 102.1%, indicating that no KTP degradation occurred during the preparation process. All formulations attained a high hydration degree after the first hour, which is essential to allow the gel layer formation prior to tablet dissolution. Independent-model dissolution parameters such as t10% and t50% dissolution times, dissolution efficiency (DE), mean dissolution time (MDT), and area under curve (AUC) were calculated for all formulations. Zero-order, first-order, Higuchi, and Korsmeyer–Peppas kinetic models were employed to interpret the dissolution profiles: a predominantly Fickian diffusion release mechanism was obtained – with Korsmeyer–Peppas exponent values ranging from 0.216 to 0.555. The incorporation of HPC was thus found to play an essential role as a release modifier from HPMC containing tablets.  相似文献   

14.
Purpose: Damar Batu (DB) is a novel film-forming biomaterial obtained from Shorea species, evaluated in this study for its potential application in transdermal drug delivery system. Methods: DB was characterized initially in terms of acid value, softening point, molecular weight (Mw), polydispersity index (Mw/Mn), and glass transition temperature (Tg). Neat, plasticized films of DB were investigated for mechanical properties. The biomaterial was further investigated as a matrix-forming agent for transdermal drug delivery system. Developed matrix-type transdermal patches were evaluated for thickness and weight uniformity, folding endurance, drug content, in vitro drug release study, and skin permeation study. Results: On the basis of in vitro drug release and in vitro skin permeation performance, formulation containing DB/Eudragit RL100 (60 : 40) was found to be better than other formulations and was selected as the optimized formulation. IR analysis of physical mixture of drug and polymer and thin layer chromatography study exhibited compatibility between drug and polymer. Conclusion: From the outcome of this study, it can be concluded that applying suitable adhesive layer and backing membrane-developed DB/ERL100, transdermal patches can be of potential therapeutic use.  相似文献   

15.
ABSTRACT

The aim of this work was to develop a ketoprofen tablet which dissolve-rapidly in the mouth, therefore, needing not be swallowed. The solubility and dissolution rate of poorly water-soluble ketoprofen was improved by preparing a lyophilized tablet (LT) of ketoprofen using freeze-drying technique. The LT was prepared by dispersing the drug in an aqueous solution of highly water-soluble carrier materials consisting of gelatin, glycine, and sorbitol. The mixture was dosed into the pockets of blister packs and then was subjected to freezing and lyophilization. The saturation solubility and dissolution characteristics of ketoprofen from the LT were investigated and compared to the plain drug and the physical mixture (PM). Results obtained showed that the increase in solubility of ketoprofen from LT matrix, nearly three times greater than the solubility of the plain drug, was due to supersaturation generated by amorphous form of the drug. Results obtained from dissolution studies showed that LT of ketoprofen significantly improved the dissolution rate of the drug compared with the PM and the plain drug. More than 95% of ketoprofen in LT dissolved within 5 min compared to only 45% of ketoprofen plain drug dissolved during 60 min. Initial dissolution rate of ketoprofen in LT was almost tenfold higher than that of ketoprofen powder alone. Crystalline state evaluation of ketoprofen in LT was conducted through differential scanning calorimetry (DCS) and x-ray powder diffraction (XRPD) to denote eventual transformation to amorphous state during the process. Scanning electron microscopic (SEM) analysis was performed and results suggest reduction in ketoprofen particle size.  相似文献   

16.
Abstract

Raft is an emerging drug delivery system, which is suitable for controlled release drug delivery and targeting. The present study aimed to evaluate the physico-chemical properties of raft, in vitro release of pantoprazole sodium sesquihydrate and conduct bioavailability studies. Box behnken design was used with three independent and dependent variables. Independent variables were sodium alginate (X1), pectin (X2) and hydroxypropyl methyl cellulose K100M (X3) while dependent variables were percentage drug release at 2 (Y2), 4 (Y4) and 8?h (Y8). The developed rafts were evaluated by their physical and chemical properties. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to study the chemical interaction and thermal behaviour of drug with polymers. Alginate and pectin contents of R9 formulation were 99.28% and 97.29%, respectively, and acid neutralization capacity was 8.0. R9 formulation showed longer duration of neutralization and nature of raft was absorbent. The raft of R9 formulation showed 98.94% release of PSS at 8?h in simulated gastric fluid. Fourier transform infrared spectroscopy showed no chemical interaction and differential scanning calorimetry indicated endothermic peaks at 250?°C for pantoprazole sodium sesquihydrate. tmax for the test and reference formulations were 8?±?2.345?h and 8?±?2.305?h, respectively. Cmax of test and reference formulations were 46.026?±?0.567?µg/mL and 43.026?±?0.567?µg/mL, respectively. AUC(0-t) of the test and reference formulations were 472.115?±?3.467?µg?×?h/mL and 456.105?±?2.017?µg?×?h/mL, respectively. Raft forming system successfully delivered the drug in controlled manner and improved the bioavailability of drugs.  相似文献   

17.
Background: Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Method: Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. Results: The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. Conclusion: The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.  相似文献   

18.
The aim of the study was to develop a proniosomal system for famotidine (FAM), a potent H2 receptor antagonist that could efficiently deliver entrapped drug over a prolonged period of time. The proniosomal system was formulated by selecting various ratios of Span 60 and cholesterol using a coacervation-phase separation method. The formulated systems were characterised for drug excipient compatibility studies by Fourier transform infrared spectroscopy (FTIR), vesicle size determination by the particle size analyser, % drug encapsulation, drug-release profiles, field emission scanning electron microscopy (FESEM) for surface morphology, X-ray diffraction (XRD) and vesicular stability at different storage conditions. By using this method, the % drug loading that resulted by the encapsulation of proniosome was found to be 78%–89%. Increase in cholesterol and surfactant concentration increases encapsulation efficiency, but further increment decreases encapsulation. In vitro drug-release studies showed prolonged release of entrapped famotidine. The highest % cumulative drug release was achieved in formulation FAM2 (96%) in 24 hours. The ex vivo data on the release of famotidine from proniosomal formulations have shown significantly increased per cent release and flux in comparison to the same dose of marketed preparation of famotidine. Stability studies were carried out in refrigerated conditions, and higher drug retention was observed. It is evident from this study that proniosomes are a promising prolonged delivery system for famotidine and have reasonably good stability characteristics.  相似文献   

19.
Objective: The suitability of the rabbit as an animal model for the primary screening and selection of the pilot scale batches during the early stages of the formulation development was studied.

Materials and methods: Three modified-release formulations of aminophylline consisted of Carbopol® 971P/HPMC K4M (F-I), and HPMC K100M (F-II) or HPMC K4M (F-III) were used. Commercial products were Aminofilin retard 350?mg tablets, Srbolek, Serbia (R-I) and Phyllocontin® 350, tablets Purdue Frederic, Canada (R-II).

Results: Calculated release rate constants and the ?2 values between R-I/F-I (84.1) and R-II/F-III (83.4) indicated similar in vitro release while the coefficient n showed presence of different mechanisms of release from Anomalous transport, Fickian diffusion to Case-II transport. Higher Tmax, was found in the rabbits, dosed with F-II (12.00?h), F-III (10.50?h), and R-II (15.00?h) formulation. The highest Cmax (9.22?mg/L) was obtained with F-II, similar lower values was seen for F-I and F-III, while commercial products showed the lowest values R-I (5.58?mg/L) and R-II (4.18?mg/L). Higher AUC values were detected for all three formulations (from 115.90 to 204.06 mgh/L) in relation to commercial products (105.33 and 113.25 mgh/L).

Discussion and conclusion: The results demonstrated a good correlation of Level A (r2 = 0.97) for the two formulations (F-I, F-III) and commercial product (R-I) indicates that there is a reasonable assumption that the rabbit might be use as a model for the preliminary comparison of scale up formulations in the early stages of the product development.  相似文献   

20.
In this study, the PEGylated nanostructured lipid carriers (PEG-NLC) were constructed for the intravenous delivery of 17-allylamino-17-demethoxygeldanamycin (17AAG). 17AAG-PEG-NLC was successfully prepared by the method of emulsion evaporation at a high temperature and solidification at a low temperature using a mixture of glycerol monostearate and PEG2000-stearate as solid lipids, and medium-chain triglyceride as the liquid lipid. The results revealed that the morphology of the NLC was spheroidal. The particle size, zeta potential and entrapment efficiency for 17AAG-PEG-NLC were observed as 189.4?nm, ?20.2 mV and 83.42%, respectively. X-ray diffraction analysis revealed that 17AAG existed as amorphous structures in the nanoparticles. In the in vitro release study, the 17AAG from 17AAG-PEG-NLC exhibited a biphasic release pattern with burst release initially and sustained release afterwards. In addition, 17AAG-PEG-NLC showed a significantly higher in vitro antitumor efficacy and longer retention time in vivo than 17AAG solution. These results indicated that 17AAG-PEG-NLC may offer a promising alternative to the current 17AAG formulations for the treatment of solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号