首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sustained release beads of ibuprofen were prepared by a capillary method using cellulose acetate phthalate, surfactants (Tween 80 and Span 80), and polymers (K 100 M Methocel and K 100 LV Methocel). These beads were formulated into capsule and tablet dosage forms. The beads did not disintegrate in simulated gastric fluid; however, they disintegrated in simulated intestinal fluid. The dissolution profiles of ibuprofen beads and dosage forms of beads (tablets and capsules) were conducted in phosphate buffer (pH 7.2) at 37°C. The beads containing Span 80 and K 100 M Methocel resulted in prolonged drug release. The preparation containing Span 80 and equal quantities of both the polymers (K 100 M Methocel and K 100 LV Methocel), also showed good sustained release properties. The formulations prepared with Tween 80 and K 100 LV Methocel released over 90% of the drug in 2 hours indicating no sustained release properties. The beads in tablet dosage form yielded slower dissolution profiles compared to the beads in capsule form which, in turn, had slower release profiles compared to the beads alone. Release of ibuprofen was much slower from tablets after one year of storage compared to tablets immediately after their manufacture.  相似文献   

2.
Sustained release beads of ibuprofen were prepared by a capillary method using cellulose acetate phthalate, surfactants (Tween 80 and Span 80), and polymers (K 100 M Methocel and K 100 LV Methocel). These beads were formulated into capsule and tablet dosage forms. The beads did not disintegrate in simulated gastric fluid; however, they disintegrated in simulated intestinal fluid. The dissolution profiles of ibuprofen beads and dosage forms of beads (tablets and capsules) were conducted in phosphate buffer (pH 7.2) at 37°C. The beads containing Span 80 and K 100 M Methocel resulted in prolonged drug release. The preparation containing Span 80 and equal quantities of both the polymers (K 100 M Methocel and K 100 LV Methocel), also showed good sustained release properties. The formulations prepared with Tween 80 and K 100 LV Methocel released over 90% of the drug in 2 hours indicating no sustained release properties. The beads in tablet dosage form yielded slower dissolution profiles compared to the beads in capsule form which, in turn, had slower release profiles compared to the beads alone. Release of ibuprofen was much slower from tablets after one year of storage compared to tablets immediately after their manufacture.  相似文献   

3.
Abstract

Indomethacin is a nonsteroidal anti-inflammatory agent and has a short half life, and causes gastric irritation. Sustained release beads of indomethacin were prepared and dissolution profiles were investigated. Beads were prepared by allowing drops of a suspension of the drug and excipients in a solution of cellulose acetate phthalate to drop into an acetic acid solution by means of a peristaltic pump. In a previous study1, sulfadiazine was used as a model drug to prepare beads by a similar method and the effects of various viscosity agents on the properties of these beads were assessed. Glycerin, polymers (Methocel and Avicel), and surfactants (Tween 80 and Span 80) were used as excipients. The incorporation of various viscosity agents and polymers into the suspension yielded beads with different disintegration and dissolution values. A high performance liquid chromatography method showed no indication of drug degradation during the preparation. The dissolution studies of the indomethacin preparations demonstrated differences in drug release properties depending on composition and method of preparation. The preparation with equal quantities of the two surfactants (Tween 80 and Span 80) released the drug at the slowest rate.  相似文献   

4.
Indomethacin is a nonsteroidal anti-inflammatory agent and has a short half life, and causes gastric irritation. Sustained release beads of indomethacin were prepared and dissolution profiles were investigated. Beads were prepared by allowing drops of a suspension of the drug and excipients in a solution of cellulose acetate phthalate to drop into an acetic acid solution by means of a peristaltic pump. In a previous study1, sulfadiazine was used as a model drug to prepare beads by a similar method and the effects of various viscosity agents on the properties of these beads were assessed. Glycerin, polymers (Methocel and Avicel), and surfactants (Tween 80 and Span 80) were used as excipients. The incorporation of various viscosity agents and polymers into the suspension yielded beads with different disintegration and dissolution values. A high performance liquid chromatography method showed no indication of drug degradation during the preparation. The dissolution studies of the indomethacin preparations demonstrated differences in drug release properties depending on composition and method of preparation. The preparation with equal quantities of the two surfactants (Tween 80 and Span 80) released the drug at the slowest rate.  相似文献   

5.
Matrix tablets manufactured from a practically insoluble drug using Methocel K4M, Methocel K100LV, and mixtures thereof exhibited non-Fickian dissolution properties governed by both diffusion and erosion (value of diffusional exponent in Peppas's transport equation 0.7). The effects of these two hydroxypropyl methylcellulose (HPMC) varieties were nonlinear and antagonistic.  相似文献   

6.
Matrix tablets manufactured from a practically insoluble drug using Methocel K4M, Methocel K100LV, and mixtures thereof exhibited non-Fickian dissolution properties governed by both diffusion and erosion (value of diffusional exponent in Peppas's transport equation 0.7). The effects of these two hydroxypropyl methylcellulose (HPMC) varieties were nonlinear and antagonistic.  相似文献   

7.
Development of Controlled Release Formulations of Ketoprofen for Oral Use   总被引:1,自引:0,他引:1  
Microencapsulated forms of ketoprofen were formulated using polymers and polymer combinations and their in-vitro release characteristics were evaluated against pure ketoprofen using Vanderkamp 600 dissolution test apparatus. Suspensions of cellulose acetate phthalate were prepared and various quantities of drug, glycerin, tween 80, span 80, methocel and avicel were added and the resulting solution was passed through a peristaltic pump into a hardening solution. Beads were formed, dried and the release of the drug was studied at various time intervals in a dissolution medium of simulated intestinal pH. The dissolution studies of the ketoprofen demonstrated differences in drug release properties depending on composition and method of preparation. A formulation of Methocel beads with equal proportions of the two surfactants released its drug content over a period of 12 hours in a zero-order fashion. Rapid drug dissolution was seen when the formulations contained Tween 80 as a surfactant. Varying the drug to CAP ratio in the suspension from 0.1 to 0.4 did not appear to alter dissolution. It is concluded that proper control of the formulation can give any desirable release from ketoprofen formulations.  相似文献   

8.
A nifedipine (NF) polyethylene glycol (PEG) solid dispersion was prepared. Using this solid dispersion, NF hydroxypropylmethylcellulose (HPMC) matrix tablets were prepared. Both the high-viscosity grade HPMC (Methocel K15M) and low-viscosity grade HPMC (Methocel K100) were applied in the tablets to form the matrix. The dissolution and absorption of NF from the tablet were evaluated as a formulation that had a sustained release over 24 hr. The Hixson-Crowell equation and Higuchi equation were used to investigate the dissolution mechanism, and the erosion and diffusion codependent mechanism was established. Adalat GITS 30 was used as a reference dosage form. Each beagle dog was also administered an intravenous injection to obtain the pharmacokinetics parameters. The Loo-Riegelman method was applied to study the in vitro/in vivo correlation of the tested tablets and Adalat GITS 30, and significant correlation was proved. Absolute bioavailability and comparative bioavailability of the tested tablet were studied. The results indicated that the NF HPMC tablet could be an ideal 24-hr sustained-release formulation.  相似文献   

9.
A nifedipine (NF) polyethylene glycol (PEG) solid dispersion was prepared. Using this solid dispersion, NF hydroxypropylmethylcellulose (HPMC) matrix tablets were prepared. Both the high-viscosity grade HPMC (Methocel K15M) and low-viscosity grade HPMC (Methocel K100) were applied in the tablets to form the matrix. The dissolution and absorption of NF from the tablet were evaluated as a formulation that had a sustained release over 24 hr. The Hixson-Crowell equation and Higuchi equation were used to investigate the dissolution mechanism, and the erosion and diffusion codependent mechanism was established. Adalat GITS 30 was used as a reference dosage form. Each beagle dog was also administered an intravenous injection to obtain the pharmacokinetics parameters. The Loo-Riegelman method was applied to study the in vitro/in vivo correlation of the tested tablets and Adalat GITS 30, and significant correlation was proved. Absolute bioavailability and comparative bioavailability of the tested tablet were studied. The results indicated that the NF HPMC tablet could be an ideal 24-hr sustained-release formulation.  相似文献   

10.
Based on dissolution profiles of three model drugs on spray layered beads with the same percentage of Aquacoat® coating, it was concluded that in vitro dissolution of oral controlled–release formulations should be performed in both gastric and intestinal media for ionizable drugs. Ketoprofen (weak acid, pKa 4.8), nicardipine HCl (salt of weak organic base, pKa8.6), and acetaminophen (very weak organic acid, pKa9.7, not ionized at physiologic pH) provided different dissolution characteristics in enzyme–free simulated gastric fluid (pH 1.4) and enzyme–free simulated intestinal fluid (pH 7.4), indicating that the rate of drug release was pH dependent and related to drug ionization even though the solubility of the coating (ethylcellulose) is pH independent. In acidic media, ketoprofen release from the beads containing low–level coating (3%) was slower than that of nicardipine HCl, with the opposite holding true in basic media. Acetaminophen was released at approximately the same rate in both acidic and basic media. A comparison of drug release profiles for nicardipine HCl nude beads was also investigated among three different dissolution methods: USP dissolution apparatus I (basket method, 50 rpm), USP dissolution apparatus II (paddle method, 50 rpm), and USP dissolution apparatus III (Bio–Dis®, Van–Kel Industries, 5 and 10 dpm). Release profiles obtained from all methods were similar, indicating that the three dissolution methods were comparable.  相似文献   

11.
Based on dissolution profiles of three model drugs on spray layered beads with the same percentage of Aquacoat coating, it was concluded that in vitro dissolution of oral controlled-release formulations should be performed in both gastric and intestinal media for ionizable drugs. Ketoprofen (weak acid, pKa 4.8), nicardipine HCl (salt of weak organic base, pKa 8.6), and acetaminophen (very weak organic acid, pKa 9.7, not ionized at physiologic pH) provided different dissolution characteristics in enzyme-free simulated gastric fluid (pH 1.4) and enzyme-free simulated intestinal fluid (pH 7.4), indicating that the rate of drug release was pH dependent and related to drug ionization even though the solubility of the coating (ethylcellulose) is pH independent. In acidic media, ketoprofen release from the beads containing low-level coating (3%) was slower than that of nicardipine HCl, with the opposite holding true in basic media. Acetaminophen was released at approximately the same rate in both acidic and basic media. A comparison of drug release profiles for nicardipine HCl nude beads was also investigated among three different dissolution methods: USP dissolution apparatus I (basket method, 50 rpm), USP dissolution apparatus II (paddle method, 50 rpm), and USP dissolution apparatus III (Bio-Dis, Van-Kel Industries, 5 and 10 dpm). Release profiles obtained from all methods were similar, indicating that the three dissolution methods were comparable.  相似文献   

12.
Pregabalin is an anticonvulsant drug used for neuropathic pain and as an adjunct therapy for partial seizures with or without secondary generalization in adults. In conventional therapy recommended dose for pregabalin is 75?mg twice daily or 50?mg three times a day, with maximum dosage of 600?mg/d. To achieve maximum therapeutic effect with a low risk of adverse effects and to reduce often drug dosing, modified release preparations; such as microspheres might be helpful. However, most of the microencapsulation techniques have been used for lipophilic drugs, since hydrophilic drugs like pregabalin, showed low-loading efficiency and rapid dissolution of compounds into the aqueous continous phase. The purpose of this study was to improve loading efficiency of a water-soluble drug and modulate release profiles, and to test the efficiency of the prepared microspheres with the help of animal modeling studies. Pregabalin is a water soluble drug, and it was encapsulated within anionic acrylic resin (Eudragit S 100) microspheres by water in oil in oil (w/o/o) double emulsion solvent diffusion method. Dichloromethane and corn oil were chosen primary and secondary oil phases, respectively. The presence of internal water phase was necessary to form stable emulsion droplets and it accelerated the hardening of microspheres. Tween 80 and Span 80 were used as surfactants to stabilize the water and corn oil phases, respectively. The optimum concentration of Tween 80 was 0.25% (v/v) and Span 80 was 0.02% (v/v). The volume of the continous phase was affected the size of the microspheres. As the volume of the continous phase increased, the size of microspheres decreased. All microsphere formulations were evaluated with the help of in vitro characterization parameters. Microsphere formulations (P1–P5) exhibited entrapment efficiency ranged between 57.00?±?0.72 and 69.70?±?0.49%; yield ranged between 80.95?±?1.21 and 93.05?±?1.42%; and mean particle size were between 136.09?±?2.57 and 279.09?±?1.97?µm. Pregabalin microspheres having better results among all formulations (Table 3) were chosen for further studies such as differential scanning calorimetry, Fourier transform infrared analysis and dissolution studies. In the last step, the best pregabalin microsphere formulation (P3) was chosen for in vivo animal studies. The pregabalin-loaded microspheres (P3) and conventional pregabalin capsules were applied orally in rats for three days, resulted in clinical improvement of cold allodynia, an indicator of peripheral neuropathy. This result when evaluated together with the serum pregabalin levels and in vitro release studies suggests that the pregabalin microspheres prepared with w/o/o double emulsion solvent diffusion method can be an alternative form for neuropathic pain therapy. Conclusively, a drug delivery system successfully developed that showed modified release up to 10?h and could be potentially useful to overcome the frequent dosing problems associated with pregabalin conventional dosage form.  相似文献   

13.
Tailor-made, pH-controlled matrix minitablets based on different HPMC types were developed comprising the weakly basic drug dipyridamole. The incorporation of pH modifiers, i.e., fumaric and succinic acid, enhanced the drug release at pH 6.8. Assessing the drug release, acid release, and the microenvironmental pH (pHM) provided detailed understanding of pH-controlled mini-matrices.

The extent and duration of pHM alteration was more pronounced in presence of fumaric acid. Minitablets based on the fast dissolving Methocel K100LV (≤ 100 cps) showed simultaneous release rates of dipyridamole and fumaric acid with a constant low average pHM.  相似文献   

14.
The loading and relase of ibuprofen, Ketoprofen and mefenamic acid from a range of strong anionic exchange resins, including cholestyramine, is decribed. Release rates into simulated gastric fluid increase with stirring speed up to 300 rpm and decrease as either the particle size of the resin beads of the degree of cross-linking increase. An increase in the temperature of loading enhances the capacity of the resin towards the drug and reduce its relase rate. Coating of the resing also enables suppression of drug release to be achieved. The samll particle size of cholestyramine enables a rapid relese of drug from the resin to be achieved. This rate is significantly greater than that obtained by monitoring dissolution from a drug-lactose dispersion and may indicate that ion-exchange technology may provide and opportunity to overcome poor dissolution characteristicsf for weekly ionic compounds.  相似文献   

15.
Tailor-made, pH-controlled matrix minitablets based on different HPMC types were developed comprising the weakly basic drug dipyridamole. The incorporation of pH modifiers, i.e., fumaric and succinic acid, enhanced the drug release at pH 6.8. Assessing the drug release, acid release, and the microenvironmental pH (pHM) provided detailed understanding of pH-controlled mini-matrices.

The extent and duration of pHM alteration was more pronounced in presence of fumaric acid. Minitablets based on the fast dissolving Methocel K100LV (≤ 100 cps) showed simultaneous release rates of dipyridamole and fumaric acid with a constant low average pHM.  相似文献   

16.
The objective of this study was to develop hydroxypropyl methylcellulose (HPMC) based controlled release (CR) formulations via hot melt extrusion (HME) with a highly soluble crystalline active pharmaceutical ingredient (API) embedded In the polymer phase. HPMC is considered a challenging CR polymer for extrusion due to its high glass transition temperature (Tg), low degradation temperature, and high viscosity. These problems were partially overcome by plasticizing the HPMC with up to 40% propylene glycol (PG). Theophylline was selected as the model API. By using differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA), and X-ray powder diffraction (XRPD), the physical properties of the formulations were systematically characterized. Five grades of HPMC (Methocel®) – E6, K100LV, K4M, K15M, and K100M – were tested. The extrusion trials were conducted on a 16?mm twIn screw extruder with HPMC/PG placebo and formulations containing theophylline/HPMC/PG (30:42:28, w/w/w). The dissolution results showed sustained release profiles without burst release for the HPMC K4M, K15M, and K100M formulations. The extrudates have good dissolution stability after being stressed for 2 weeks under 40°C/75% RH open dish conditions and the crystalline API form did not change upon storage. Overall, the processing windows were established for the HPMC based HME-CR formulations.  相似文献   

17.
ABSTRACT

Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37°C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.  相似文献   

18.
Development of an extended release oral dosage form for nifedipine using the non-uniform drug distribution matrix method was conducted. The process conducted in a fluid bed processing unit was optimized by controlling the concentration gradient of nifedipine in the coating solution and the spray rate applied to the non-pareil beads. The concentration of nifedipine in the coating was controlled by instantaneous dilutions of coating solution with polymer dispersion transported from another reservoir into the coating solution at a controlled rate. The USP dissolution method equipped with paddles at 100 rpm in 0.1 N hydrochloric acid solution maintained at 37°C was used for the evaluation of release rate characteristics. Results indicated that (1) an increase in the ethyl cellulose content in the coated beads decreased the nifedipine release rate, (2) incorporation of water-soluble sucrose into the formulation increased the release rate of nifedipine, and (3) adjustment of the spray coating solution and the transport rate of polymer dispersion could achieve a dosage form with a zero-order release rate. Since zero-order release rate and constant plasma concentration were achieved in this study using the non-uniform drug distribution technique, further studies to determine in vivo/in vitro correlation with various non-uniform drug distribution dosage forms will be conducted.  相似文献   

19.
ABSTRACT

In vitro dissolution of metronidazole from sustained release floating tablets was studied with varied proportions of sodium bicarbonate (SB) and Pharmatose DCL 11. Two polymers with different hydration characteristics, Methocel K4M and Carbopol 971P NF, were used to formulate the matrices. The variables studied include the matrices' release profile, hydration volume, and floating behavior. All Methocel matrices floated more than 8 h with SB proportions up to 24%, while Carbopol matrices floated more than 8 h with SB proportions only up to 12%. Matrices' hydration increased with time until reaching a peak and declining thereafter. Methocel matrices showed greater hydration volumes and greater drug dissolution compared to Carbopol matrices. After adding increasing quantities of Pharmatose to matrices containing 12% SB, hydration volume decreased while dissolution increased. These results were attributed to water-filled pores that formed following the Pharmatose dissolution and to reduced polymer proportions. Carbopol matrices showed greater susceptibility to the added Pharmatose, becoming more erodible and releasing higher quantities of metronidazole. The greater Carbopol susceptibility to added Pharmatose was attributed to its faster hydration. Methocel matrices hydrate rapidly only at the surface, delaying hydration and Pharmatose dissolution.  相似文献   

20.
Bioequivalence comparisons of two sustained release and an immediate release acetazolamide dosage form performed in normal human volunteers (n = 18) demonstrated a large statistical difference between the preparations. The sustained release dosage forms were 40-70% less available than the rapid release form based on comparisons of AUC data. Plasma level data from subjects given a suspension of acetazolamide yielded a biological half-life of 8.5 (± 2.54) hours which is twice that reported previously. A comparison of the AUC data and dissolution profiles generated for each dosage form showed a rank order correlation when a pH 1.2 dissolution fluid was used; however, correlation was not evident when the dissolution media was exchanged for pH 4.5 or 7.3 dissolution media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号