首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypoglycemic effect of oral insulin capsules coated with pH-dependent Eudragit® S100 and containing various absorption promoters was studied in hyperglycemic beagle dogs. The absorption enhancers used were bioadhesive polymers, sodium salicylate, and non-ionic surfactants. A comparative study of the bioadhesive polymers, polycarbophil (PC), hydroxypropyl methylcellulose (HPMC), and carbopol 934 in insulin-coated capsules revealed no significant difference between the insulin capsules containing these polymers, giving relative hypoglycemia (RH) values ranging from 4.3±2.3% to 6.5±5.1%. It was also found that the method of preparation of the mixture of the bioadhesive polymer with insulin either by physical mixing or freeze-drying did not affect the RH values obtained. Sodium salicylate, when used in insulin enteric-coated capsules (50 mg) mixed with insulin as a physical mixture, or prepared by wet granulation using 10% polyvinyl pyrollidone (PVP), or by freeze-drying, produced RH values ranging from 7.3±2.9% to 9.4±3.7%. When sodium salicylate (100 mg) was used with insulin in freeze-dried granules an RH value of 10±2.6% was produced. As the dose of insulin increased from 6 to 9 U/kg, the area under curve (AUC) of the enteric-coated capsules containing 50 mg sodium salicylate increased from 73.2±27.8% to 121.4±102.7% reduction, but the RH did not change significantly. Insulin capsules containing polyoxyethylene-9-lauryl ether (POELE) used in its optimum concentration (2%), found in these experiments, produced RH of 9.5±6.8% when prepared as granules by wetting with a few drops of absolute alcohol in the presence of PC (50 mg). Insulin capsules containing lower (1%) or higher (3%) concentrations of POELE and prepared with PC, 50 mg by wet granulation produced lower RH of about 6%. The enteric-coated oral insulin capsules containing insulin (6 or 9 U/kg) and sodium salicylate (50 mg) as an absorption promoter, together with the bioadhesive polymer polycarbophil (50 mg), and prepared either by wet granulation using ethanol or by freeze-drying, are the best formulations to be used. They achieved a reduction in plasma glucose levels of about 25-30% and RH of about 10%. Also insulin (9 U/kg) capsules containing 2% POELE produced a 28% reduction in plasma glucose levels and RH of 9.6±6.8%.  相似文献   

2.
In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2 h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6 h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40 μm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.  相似文献   

3.
In this paper, we present in vitro and in vivo release data on pH-sensitive microspheres of Eudragit L100, Eudragit RS100 and their blend systems prepared by double emulsion-solvent evaporation technique for oral delivery of insulin. Of the three systems developed, Eudragit L100 was chosen for preclinical studies. Insulin was encapsulated and in vitro experiments performed on insulin-loaded microspheres in pH 1.2 media did not release insulin during the first 2?h, but maximum insulin was released in pH 7.4 buffer media from 4 to 6?h. The microspheres were characterized by scanning electron microscopy to understand particle size, shape and surface morphology. The size of microspheres ranged between 1 and 40?µm. Circular dichroism spectra indicated the structural integrity of insulin during encapsulation as well as after its release in pH 7.4 buffer media. The in vivo release studies on diabetic-induced rat models exhibited maximum inhibition of up to 86%, suggesting absorption of insulin in the intestine.  相似文献   

4.
Tablets containing mesalazine as a model drug were coated using various combinations of two methacrylic acid copolymers, (Eudragit® L100 and Eudragit S100) by spraying from aqueous systems. The Eudragit L100-Eudragit S100 (w/w) combinations studied were 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 1:5, and 0:1. The coated tablets were tested in vitro for their suitability for pH-dependent colon-targeted oral drug delivery. The dissolution profiles of the drug obtained from the studied tablets demonstrate that the release of the drug could be manipulated by changing the Eudragit L100-Eudragit S100 ratios in the combinations within the pH range between 6.0 and 7.0 in which the individual polymers are soluble, and a coating formulation consisting of a combination of the two polymers can overcome the issue of high gastrointestinal (GI) pH variability among individuals. The results also demonstrate the feasibility of using aqueous dispersions of Eudragit L100-Eudragit S100 combinations for coating tablets for colon-targeted delivery of drugs, and that the formulation can be adjusted to deliver drug(s) at any other desirable site of the intestinal region of the GI tract in which pH of the fluid is within the range 6.0 to 7.0. For colon-targeted delivery of drugs, the proposed combination system is superior to tablets coated with either Eudragit L100 or Eudragit S100 alone.  相似文献   

5.
ABSTRACT

In this study a sustained-release formulation of traditional Chinese medicine compound recipe (TCMCR) was developed by selecting heart-protecting musk pills (HPMP) as the model drug. Heart-protecting musk pellets were prepared with the refined medicinal materials contained in the recipe of HPMP. Two kinds of coated pellets were prepared by using pH-dependent methacrylic acid as film-forming material, which could dissolve under different pH values in accordance with the physiological range of human gastrointestinal tract (GIT). The pellets coated with Eudragit L30D-55, which dissolves at pH value over 5.5, were designed to disintegrate and release drug in the duodenum. The pellets coated with Eudragit L100–Eudragit S100 combinations in the ratio of 1:5, which dissolve at pH value 6.8 or above, were designed to disintegrate and release drug in the jejunum to ileum. The pellets coated with HPMC, which dissolves in water at any pH value, were designed to disintegrate and release drug in the stomach. Finally, the heart-protecting musk sustained-release capsules (HPMSRC) with a pH-dependent gradient-release pattern were prepared by encapsulating the above three kinds of coated pellets at a certain ratio in hard gelatin capsule. The results of dissolution of borneol (one of the active compounds of the TCMCR) in vitro demonstrated that the coating load and the pH value of the dissolution medium had little effect on the release rate of borneol from pellets coated with hydroxypropyl methyl cellulose (HPMC), but had a significant effect on the release rate of borneol from pellets coated with Eudragit L30D-55 or Eudragit L100–Eudragit S100 combinations in the ratio of 1:5. The pellets coated with Eudragit L30D-55 at 30% (w/w) coating load or above had little drug release in 0.1 mol/L HCl for 3 hr and started to release drug at pH value over 5.5. The pellets coated with Eudragit L100–Eudragit S100 combinations in the ratio of 1:5 at 36% (w/w) coating load or higher had little drug release in 0.1 mol/L HCl for 3 hr and in phosphate buffer of pH value 6.6 for 2 hr, and started to release drug at pH value 6.8 or above. The release profiles of lipophilic bornoel and hydrophilic total ginsenoside from HPMSRC, consisting of three kinds of pellets respectively coated at a certain ratio with HPMC, Eudragit L30D-55, and Eudragit L100–Eudragit S100 in the ratio of 1:5, showed a characteristic of pH-dependent gradient release under the simulated gastrointestinal pH conditions and no significant difference between them. The results indicated that various components with extremely different physicochemical properties in the pH-dependent gradient-release delivery system of TCMCR could release synchronously while sustained-releasing. This complies with the organic whole concept of compound compatibility of TCMCR.  相似文献   

6.
In this study a sustained-release formulation of traditional Chinese medicine compound recipe (TCMCR) was developed by selecting heart-protecting musk pills (HPMP) as the model drug. Heart-protecting musk pellets were prepared with the refined medicinal materials contained in the recipe of HPMP. Two kinds of coated pellets were prepared by using pH-dependent methacrylic acid as film-forming material, which could dissolve under different pH values in accordance with the physiological range of human gastrointestinal tract (GIT). The pellets coated with Eudragit L30D-55, which dissolves at pH value over 5.5, were designed to disintegrate and release drug in the duodenum. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5, which dissolve at pH value 6.8 or above, were designed to disintegrate and release drug in the jejunum to ileum. The pellets coated with HPMC, which dissolves in water at any pH value, were designed to disintegrate and release drug in the stomach. Finally, the heart-protecting musk sustained-release capsules (HPMSRC) with a pH-dependent gradient-release pattern were prepared by encapsulating the above three kinds of coated pellets at a certain ratio in hard gelatin capsule. The results of dissolution of borneol (one of the active compounds of the TCMCR) in vitro demonstrated that the coating load and the pH value of the dissolution medium had little effect on the release rate of borneol from pellets coated with hydroxypropyl methyl cellulose (HPMC), but had a significant effect on the release rate of borneol from pellets coated with Eudragit L30D-55 or Eudragit L100-Eudragit S100 combinations in the ratio of 1:5. The pellets coated with Eudragit L30D-55 at 30% (w/w) coating load or above had little drug release in 0.1 mol/L HCl for 3 hr and started to release drug at pH value over 5.5. The pellets coated with Eudragit L100-Eudragit S100 combinations in the ratio of 1:5 at 36% (w/w) coating load or higher had little drug release in 0.1 mol/L HCl for 3 hr and in phosphate buffer of pH value 6.6 for 2 hr, and started to release drug at pH value 6.8 or above. The release profiles of lipophilic bornoel and hydrophilic total ginsenoside from HPMSRC, consisting of three kinds of pellets respectively coated at a certain ratio with HPMC, Eudragit L30D-55, and Eudragit L100-Eudragit S100 in the ratio of 1:5, showed a characteristic of pH-dependent gradient release under the simulated gastrointestinal pH conditions and no significant difference between them. The results indicated that various components with extremely different physicochemical properties in the pH-dependent gradient-release delivery system of TCMCR could release synchronously while sustained-releasing. This complies with the organic whole concept of compound compatibility of TCMCR.  相似文献   

7.
The objective of this study was to investigate the influence of Eudragit® NE 30 D blended with Eudragit® L 30 D-55 on the release of phenylpropanolamine hydrochloride (PPA·HCl) from coated pellets. The miscibility of Eudragit NE 30 D/L 30 D-55 blends at different ratios was studied by using differential scanning calorimetry. The release of PPA·HCl from pellets coated with Eudragit NE 30 D alone and a Eudragit NE 30 D/L 30 D-55 blend, when stored at 40°C and 60°C, was determined by UV spectroscopy. Eudragit NE 30 D and Eudragit L 30 D-55 were miscible in ratios greater than 4:1. The curing time that was required to reach an equilibrium state decreased with the addition of Eudragit L 30 D-55. The presence of Eudragit L 30 D-55 also produced a film coating that was less tacky, and a dispersion of Eudragit NE 30 D containing Eudragit L 30 D-55 (5:1) was shown to prevent agglomeration of the pellets during coating and storage.  相似文献   

8.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit NE30D alone (F1) or blend of Eudragit RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit NE30D and a blend of Eudragit RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit RL30D/RS30D polymers with proper features as coating materials produced a longer T(max), a lower C(max) and a little higher bioavailability compared to F1 (coated with Eudragit NE30D alone). The C(max), T(max) and relative bioavailability of F1 and F2 coated pellets were 15.16 microg/ml, 4.17 h, 97.69% and 11.41 microg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

9.
Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES? for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion–spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES? system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12?h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5?h) as compared to the CODES? and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES?] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.  相似文献   

10.
Polyisobutylcyanoacrylate (PIBCA) nanospheres were employed as biodegradable polymeric carriers for oral (p.o.) and subcutaneous (s.c.) delivery of insulin. The polymerization technique used was able to hold 65%-95% of insulin added 30 min after initiation of polymerization. The percentage drug loading was monomer concentration dependent. Insulin adsorption to the nanospheres was measured by radioimmunoassay. Although Pluronic F68 (0.5%) did not significantly alter the in vitro insulin degradation half-life T50%, sodium cholate (0.5%) increased the degradation T50% of insulin by 56% (from 13.6 +/- 1.6 to 22.1 +/- 2 min). This study also investigated the in vivo performance of insulin-loaded PIBCA in aqueous suspension with or without sodium cholate (0.5%) and Pluronic F68 (0.5%) surfactants after oral and subcutaneous administration to alloxan-induced diabetic rats. Insulin absorption was evaluated by its hypoglycemic effect. Insulin associated with PIBCA nanospheres retains its biological activity up to 15 h and 24 h after oral and subcutaneous administrations, respectively. Administered orally insulin-loaded (75 U/kg) nanospheres, in the presence of surfactants, significantly reduced the mean blood glucose level from 392 +/- 32 to 80 +/- 13 mg/dl within 2 h and maintained it at 100 mg/dl or less for more than 8 h. On the other hand, the subcutaneous administration of insulin-loaded (25 U/kg) nanospheres significantly decreased the blood glucose level from 406 +/- 33 to 88.5 +/- 12.8 mg/dl within 1 h, and the lowered glucose level was maintained at 100 mg/dl or less for more than 12 h; it returned to its initial value 24 h after administration. Insulin-loaded nanospheres with surfactants showed significant (P < .05) pharmacological availability (PA%) of 37.6% +/- 3.7% and 65.2% +/- 2.7% after oral and subcutaneous dosages, respectively. The existence of surfactants with PIBCA nanospheres improved the oral PA% by 49.2%. These findings suggest that the developed PIBCA, in the presence of surfactants, would be useful not only in improving insulin gastrointestinal absorption, but also in sustaining its systemic action by lowering the blood glucose to an acceptable level.  相似文献   

11.
Water vapour transmission through free and applied film of four Eudragit resins namely, E100, L100 and RS100 to directly compressed thiamine hydrochloride tablets was investigated. The type of Eudragit film influenced both water vapour transmission and moisture absorption characteristics of the tablets compressed with either single or binary blend of vehicles. The moisture absorption rate constant Ka, for a given batch was found to be a function of vapour pressure, P, and film thickness, L. The relationship between Ka and either of these parameters is exponental and may be expressed as Ka = A exp (x/P) and Ka = K*a exp (-x*L). In general, film coating with Eudragit resins affected the physical characteristics of the tablets. The rate of drug release, K has an exponentially relationship as Ke Ko exp (-c/L).  相似文献   

12.
The preparation of sustained-release (SR) drug pellets and their tablets was evaluated. Pellets containing indomethacin, pseudoephedrine hydrochloride (P-HCl), or pseudoephedrine (P) base were prepared by spraying a mixture of drug, Eudragit S-100 resins, dibutyl sebacate, and alcohol onto nonpareil seeds via the Wurster-column process. The oven-dried drug/Eudragit S-100 (DS) pellets were coated with different levels of Eudragit RS and Eudragit S-100 acrylic resins. Tablets containing P-HCl or P-base SR pellets, microcrystalline cellulose, and Methocel K4M were compressed. The solubility of the drug entity in the polymer solution was found to be the most critical factor affecting the yield and the physical properties of the resultant DS pellets. Dissolution studies of Eudragit RS coated drug pellets demonstrated that the release profiles depended not only on the physicochemical properties of the drug, particularly aqueous solubility, but also on the coating levels. The release rate profiles of the matrix tablets can be modified by varying the types of P-HCl or P-base SR pellets in the formulation. The release of drug from the matrix tablets is primarily matrix controlled.  相似文献   

13.
Abstract

Water vapour transmission through free and applied film of four Eudragit resins namely, E100, L100 and RS100 to directly compressed thiamine hydrochloride tablets was investigated. The type of Eudragit film influenced both water vapour transmission and moisture absorption characteristics of the tablets compressed with either single or binary blend of vehicles. The moisture absorption rate constant Ka, for a given batch was found to be a function of vapour pressure, P, and film thickness, L. The relationship between Ka and either of these parameters is exponental and may be expressed as Ka = A exp (x/P) and Ka = K*a exp (-x*L). In general, film coating with Eudragit resins affected the physical characteristics of the tablets. The rate of drug release, K has an exponentially relationship as Ke Ko exp (-c/L).  相似文献   

14.
Polyisobutylcyanoacrylate (PIBCA) nanospheres were employed as biodegradable polymeric carriers for oral (p.o.) and subcutaneous (s.c.) delivery of insulin. The polymerization technique used was able to hold 65%–95% of insulin added 30 min after initiation of polymerization. The percentage drug loading was monomer concentration dependent. Insulin adsorption to the nanospheres was measured by radioimmumoassay. Although Pluronic F68 (0.5%) did not significantly alter the in vitro insulin degradation half-life T50%, sodium cholate (0.5%) increased the degradation T50% of insulin by 56% (from 13.6 ± 1.6 to 22.1 ± 2 min). This study also investigated the in vivo performance of insulin-loaded PIBCA in aqueous suspension with or without sodium cholate (0.5%) and Pluronic F68 (0.5%) surfactants after oral and subcutaneous administration to alloxan-induced diabetic rats. Insulin absorption was evaluated by its hypoglycemic effect. Insulin associated with PIBCA nanospheres retains its biological activity up to 15 h and 24 h after oral and subcutaneous administrations, respectively. Administered orally, insulin-loaded (75 U/kg) nanospheres, in the presence of surfactants, significantly reduced the mean blood glucose level from 392 ± 32 to 80 ± 13 mg/dl within 2 h and maintained it at 100 mg/dl or less for more than 8 h. On the other hand, the subcutaneous administration of insulin-loaded (25 U/kg) nanospheres significantly decreased the blood glucose level from 406 ± 33 to 88.5 ± 12.8 mg/dl within 1 h, and the lowered glucose level was maintained at 100 mg/dl or less for more than 12 h; it returned to its initial value 24 h after administration. Insulin-loaded nanospheres with surfactants showed significant P < 05) pharmacological availability (PA%) of 37.6% ± 3.7% and 65.2% ± 2.7% after oral and subcutaneous dosages, respectively. The existence of surfactants with PIBCA nanospheres improved the oral PA% by 49.2%. These findings suggest that the developed PIBCA, in the presence of surfactants, would be useful not only in improving insulin gastrointestinal absorption, but also in sustaining its systemic action by lowering the blood glucose to an acceptable level.  相似文献   

15.
Abstract

Aqueous acrylic polymer dispersions were blended in order to improve processing and film formation from acrylic polymers with poor film forming properties and/or to obtain sustained-release film coated pellets with optimal barrier properties according to the physicochemical and pharmacokinetic requirements of the active substance.

Heterogeneous film structures are generally obtained from blends containing an association of hard acrylic polymers (Eudragit* RS30D, S100) with the soft Eudragit* NE30D when the drying temperature is lower than the minimum film forming temperature (MFT) of the hard acrylic polymers. The Tg and MFT values of the hard acrylic polymers are not modified in the presence of the soft polymer as shown by the thermograms of these blends which are generally characterized by two individual glassy transitions.

On the other hand, a wide range of drug dissolution profiles can be obtained from film coated pellets either by using, in different proportions, the insoluble but readily permeable Eudragit* RL30D in association with the less permeable Eudragit* RS30D in order to obtain pH-independent permeability membrane, or by mixing the anionic methacrylic acid copolymers (L30D, S100) with the neutral NE30D in order to obtain pH-dependent permeability film coated pellets showing higher dissolution release rates at intestinal pH values.  相似文献   

16.
The influence of fillers and polymeric films on adhesive strength of hydroxypropyl methylcellulose (HPMC) and Eudragit E100® films coated on ranitidine HCl tablets containing either spray-dried rice starch (SDRS) or lactose monohydrate as fillers after storage at 45°C/75% RH for four weeks was investigated by the use of butt adhesion technique. The adhesive strength of film-coated tablets of fillers without drug was found to slightly decrease after storage. In contrast, the adhesive strength of drug-containing film-coated tablets significantly reduced, the degree of which was higher for Eudragit E100® than HPMC. Physicochemical characterization by employing differential scanning calorimetry (DSC) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the drug was obviously incompatible with lactose and possibly mild interaction with Eudragit E100® was suggested. The results indicated that the adhesive strength of film-coated tablets would be affected not only by the drug-excipient interaction, but also by the drug-polymeric film interaction.  相似文献   

17.
Abstract

Two acrylic polymers (Eudragit® L 12.5 P and L 30 D) and a cellulosic polymer (cellulose acetate trimellitate, CAT) in organic and aqueous formulations were used in order to obtain an enteric coating on tablets containing clorpheniramine maleate as a water-soluble model drug. The coating of tablets was executed in a coating pan in similar conditions for each kind of solvent. The coated tablets were tested according to the delayed-release test of USP 23 (Method A). In our experimental conditions different amounts of polymers were needed to obtain an enteric coating. The lowest amount was in the case of Eudragit L 30 D (aqueous), after which appeared Eudragit L 12.5 P (organic), CAT (organic), and finally, CAT (aqueous) as the polymer that needed to be of the highest amount. During the dissolution test differences in the size and aspect of the tablets were observed according to the polymers. Acrylic polymers did not show changes in size and aspect, but CAT polymers showed a notable increase in size. me different behavior of the tablets during the dissolution test can explain the differences observed in the adjustment of the release data. The release data were tested assuming common kinetic models. In the present study it was observed that Eudragit L polymers release the drug in a first-order kinetic and that CAT releases it according to a zero-order kinetic.  相似文献   

18.
Two acrylic polymers (Eudragit® L 12.5 P and L 30 D) and a cellulosic polymer (cellulose acetate trimellitate, CAT) in organic and aqueous formulations were used in order to obtain an enteric coating on tablets containing clorpheniramine maleate as a water-soluble model drug. The coating of tablets was executed in a coating pan in similar conditions for each kind of solvent. The coated tablets were tested according to the delayed-release test of USP 23 (Method A). In our experimental conditions different amounts of polymers were needed to obtain an enteric coating. The lowest amount was in the case of Eudragit L 30 D (aqueous), after which appeared Eudragit L 12.5 P (organic), CAT (organic), and finally, CAT (aqueous) as the polymer that needed to be of the highest amount. During the dissolution test differences in the size and aspect of the tablets were observed according to the polymers. Acrylic polymers did not show changes in size and aspect, but CAT polymers showed a notable increase in size. me different behavior of the tablets during the dissolution test can explain the differences observed in the adjustment of the release data. The release data were tested assuming common kinetic models. In the present study it was observed that Eudragit L polymers release the drug in a first-order kinetic and that CAT releases it according to a zero-order kinetic.  相似文献   

19.
ABSTRACT

The influence of fillers and polymeric films on adhesive strength of hydroxypropyl methylcellulose (HPMC) and Eudragit E100® films coated on ranitidine HCl tablets containing either spray-dried rice starch (SDRS) or lactose monohydrate as fillers after storage at 45°C/75% RH for four weeks was investigated by the use of butt adhesion technique. The adhesive strength of film-coated tablets of fillers without drug was found to slightly decrease after storage. In contrast, the adhesive strength of drug-containing film-coated tablets significantly reduced, the degree of which was higher for Eudragit E100® than HPMC. Physicochemical characterization by employing differential scanning calorimetry (DSC) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the drug was obviously incompatible with lactose and possibly mild interaction with Eudragit E100® was suggested. The results indicated that the adhesive strength of film-coated tablets would be affected not only by the drug-excipient interaction, but also by the drug-polymeric film interaction.  相似文献   

20.
Insulin suppositories were formulated using Witepsol W35 as a base to investigate the effect of various bile salts/acids on the plasma glucose concentration of diabetic beagle dogs. Comparison of the effect of these formulations was made with that produced by insulin subcutaneous injections. Of the bile salts/acids studied, incorporation of 100 mg of deoxycholic acid (DCA), sodium cholate (NaC), or sodium deoxycholate (NaDC) with insulin (10 U/Kg) showed that suppositories containing NaDC produced the highest area under the curve (AUC) and relative hypoglycemia (RH) of 290 ± 83 mg%h and 28% ± 8.1%, respectively. To study the optimum amount of NaDC in insulin suppositories to produce the highest RH, 50-200 mg/suppository were used, and we found that 150 mg NaDC produced 35% ± 13% RH. We also studied the influence of different doses of insulin (5-20 U/kg) in the presence of NaDC (100 mg). It was found that increase of the insulin dose was accompanied by an increase in AUC and maximum reduction in plasma glucose level Cmax. A combination of NaDC (100 mg) and NaC (50 mg) produced an AUC of 252 ± 13 mg% h and an RH of 49% ± 2.6%, which were higher than produced by either of its individual components (NaC 50 mg or NaDC 100 mg) when used alone or when compared with an equivalent amount of NaDC (150 mg). When the effect of sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC) was studied, it was found that an insulin suppository containing 100 mg of either NaTC or NaTDC produced an RH equivalent to that produced previously with a mixture of NaDC (100 mg) and NaC (50 mg). On the other hand, NaC (50 mg) did not improve the hypoglycemic effect of NaTC any further. In conclusion, a relative hypoglycemia of about 50% can be reached using insulin suppositories containing Witepsol W35 as a base and NaDC plus NaC (100 mg plus 50 mg, respectively), NaTDC (100 mg), or NaTC (100 mg) as rectal absorption enhancers of insulin. A desirable hypoglycemia, expressed as Cmax, and/or AUC can be reached by adjusting the insulin dose in the formulation according to the degree of hyperglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号