首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Objective: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets.

Methods: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2).

Results: The particle size was significantly reduced (from 1000 µm to 1–10 µm and 400?nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara® capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01?mol/L SDS solution over 60?min. In addition, F1, F2, and Antara® capsules were given orally to 6 beagle dogs to determine the bioavailability. The Cmax of F1, F2 (8.21?±?2.55 and 9.33?±?2.37 μg/mL)and the AUC(0?t) of F1, F2 (152.46?±?78.89 and 172.17?±?67.58 μg/mL·h)were higher than those of Antara® (6.02?±?3.34 μg/mL and 89.82?±?46.46 μg/mL·h) and, F1, F2 reached their Cmax earlier than Antara® (F1: 2.0?±?1.1?h; F2: 1.8?±?1.2?h; Antara®: 6.0?±?8.9?h).

Conclusion: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.  相似文献   

2.
Purpose: Pranlukast, one of the potential therapeutic tools in the treatment of asthma, has limited clinical applications due to its poor water solubility. The study is aimed to provide a platform for better utilizing pranlukast with enhancement of the dissolution rate and, thus, the oral bioavailability of pranluka'st by preparing nanosuspensions through high-pressure homogenization method. Method: Poloxamer407 and PEG200 were chosen as stabilizer and surfactant. The formulation was investigated systematically with the dissolution tests as predominant method. Nanosuspensions were prepared by programmed high-pressure homogenization method. The product was characterized by particle size analysis, TEM and XRD are evaluated by in vitro dissolution tests and in vivo absorption examination. In addition, nanosuspensions with only pranlukast were prepared and compared with formulated nanosuspensions. Results: The optimal values of formulation were 0.5% (w/v) pranlukast with 0.375% (w/v) Poloxamer407, 0.375% (w/v) PEG200 and the screened programming homogenizing procedure parameters were 680 bar for the first 15 circles, 1048 bar for the next 9 circles and 1500 bar for the last 9 circles. Nanosuspensions of 318.2?±?7.3?nm, -29.3?±?0.8 mV were obtained. The XRD analysis indicated no change of crystalline occurred in the process of homogenization. The in vitro dissolution behavior of nanosuspensions exhibited complete release in 30?min with a remarkable fast dissolution rate. The in vivo bioavailability of formulated pranlukast nanosuspensions demonstrated its enhancement of fast onset of therapeutic drug effects with 4.38-fold improved compared to that of raw crystals. Conclusion: The study provides a feasible, practical thinking of industry development in the clinical use of pranlukast.  相似文献   

3.
Objective: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets. Methods: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2). Results: The particle size was significantly reduced (from 1000 μm to 1-10 μm and 400?nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara? capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01?mol/L SDS solution over 60?min. In addition, F1, F2, and Antara? capsules were given orally to 6 beagle dogs to determine the bioavailability. The C(max) of F1, F2 (8.21?±?2.55 and 9.33?±?2.37 μg/mL)and the AUC((0-t)) of F1, F2 (152.46?±?78.89 and 172.17?±?67.58 μg/mL·h)were higher than those of Antara? (6.02?±?3.34 μg/mL and 89.82?±?46.46 μg/mL·h) and, F1, F2 reached their C(max) earlier than Antara? (F1: 2.0?±?1.1?h; F2: 1.8?±?1.2?h; Antara?: 6.0?±?8.9?h). Conclusion: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.  相似文献   

4.
Purpose: Pranlukast, one of the potential therapeutic tools in the treatment of asthma, has limited clinical applications due to its poor water solubility. The study is aimed to provide a platform for better utilizing pranlukast with enhancement of the dissolution rate and, thus, the oral bioavailability of pranluka’st by preparing nanosuspensions through high-pressure homogenization method.

Method: Poloxamer407 and PEG200 were chosen as stabilizer and surfactant. The formulation was investigated systematically with the dissolution tests as predominant method. Nanosuspensions were prepared by programmed high-pressure homogenization method. The product was characterized by particle size analysis, TEM and XRD are evaluated by in vitro dissolution tests and in vivo absorption examination. In addition, nanosuspensions with only pranlukast were prepared and compared with formulated nanosuspensions.

Results: The optimal values of formulation were 0.5% (w/v) pranlukast with 0.375% (w/v) Poloxamer407, 0.375% (w/v) PEG200 and the screened programming homogenizing procedure parameters were 680 bar for the first 15 circles, 1048 bar for the next 9 circles and 1500 bar for the last 9 circles. Nanosuspensions of 318.2?±?7.3?nm, ?29.3?±?0.8 mV were obtained. The XRD analysis indicated no change of crystalline occurred in the process of homogenization. The in vitro dissolution behavior of nanosuspensions exhibited complete release in 30?min with a remarkable fast dissolution rate. The in vivo bioavailability of formulated pranlukast nanosuspensions demonstrated its enhancement of fast onset of therapeutic drug effects with 4.38-fold improved compared to that of raw crystals.

Conclusion: The study provides a feasible, practical thinking of industry development in the clinical use of pranlukast.  相似文献   

5.
In this study, once-a-day tetramethylpyrazine phosphate (TMPP) sustained-release pellets were successfully prepared. The pellets cores were carried out in extrusion-spheronization machine and then coated in fluidized-bed. To optimize cumulative release profile, two different coating systems with the same the TMPP pellets cores were employed. The first coating system consisted of surlease, containing HPMC E5 (0.1% w/w), i.e., P1. The second coating system only consisted of surlease, i.e., P2. The two kinds of coating systems were both given coating levels in terms of weight gain of 10%. The resulted once-a-day TMPP sustained-release pellets (OTSP), the mixture of P1 and P2 with the weight proportion of 1:1, were filled in a capsule (150?mg TMPP/capsule). The relative bioavailability of OTSP was studied in six beagle dogs after oral administration using a commercial TMPP tablets as a reference. The C(max) and T(max) for OTSP and TMPP tablets were 213.06?ng/mL, 2.50?h and 3402.13?ng/mL, 0.33?h, respectively and the relative bioavailability of P3 was 97.18% compared with TMPP tablets. Based on the results, it was indicated that TMPP sustained-release pellets and TMPP conventional tablets were bioequivalent.  相似文献   

6.
The objective of this study was to develop a tablet formulation of ketoconazole incorporating drug nanoparticles to enhance saturation solubility and dissolution velocity for enhancing bioavailability and reducing variability in systemic exposure. The bioavailability of ketoconazole is dissolution limited following oral administration. To enhance bioavailability and overcome variability in systemic exposure, a nanoparticle formulation of ketoconazole was developed. Ketoconazole nanoparticles were prepared using a media-milling technique. The nanosuspension was layered onto water-soluble carriers using a fluid bed processor. The nanosuspensions were characterized for particle size before and after layering onto water-soluble carriers. The saturation solubility and dissolution characteristics were investigated and compared with commercial ketoconazole formulation to ascertain the impact of particle size on drug dissolution. The drug nanoparticles were evaluated for solid-state transitions before and after milling using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). This study demonstrated that tablet formulation incorporating ketoconazole nanoparticles showed significantly faster rate of drug dissolution in a discriminating dissolution medium as compared with commercially available tablet formulation. There was no affect on solid-state properties of ketoconazole following milling. The manufacturing process used is relatively simple and scalable indicating general applicability to enhance dissolution and bioavailability of many sparingly soluble compounds.  相似文献   

7.
The objective of this study was to develop a tablet formulation of ketoconazole incorporating drug nanoparticles to enhance saturation solubility and dissolution velocity for enhancing bioavailability and reducing variability in systemic exposure. The bioavailability of ketoconazole is dissolution limited following oral administration. To enhance bioavailability and overcome variability in systemic exposure, a nanoparticle formulation of ketoconazole was developed. Ketoconazole nanoparticles were prepared using a media-milling technique. The nanosuspension was layered onto water-soluble carriers using a fluid bed processor. The nanosuspensions were characterized for particle size before and after layering onto water-soluble carriers. The saturation solubility and dissolution characteristics were investigated and compared with commercial ketoconazole formulation to ascertain the impact of particle size on drug dissolution. The drug nanoparticles were evaluated for solid-state transitions before and after milling using differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). This study demonstrated that tablet formulation incorporating ketoconazole nanoparticles showed significantly faster rate of drug dissolution in a discriminating dissolution medium as compared with commercially available tablet formulation. There was no affect on solid-state properties of ketoconazole following milling. The manufacturing process used is relatively simple and scalable indicating general applicability to enhance dissolution and bioavailability of many sparingly soluble compounds.  相似文献   

8.
Background: Simvastatin is classified as a Biopharmaceutics Classification System (BCS) Class-II compound with a poor aqueous solubility and an acceptable permeability through biomembranes. The strategy of increasing the in vitro dissolution has the potential to enhance the oral bioavailability when using nanosized crystalline drugs. Objective: The aim of this article was to prepare simvastatin nanocrystals to enhance its dissolution rate and bioavailability by exploiting sonoprecipitation. Methods: Injecting 0.50% (w/v) methanol solution of simvastatin into 0.20% (w/v) water solution of F68 under sonication amplitude of 400?W and processing temperature of 3°C. Results: Simvastatin nanocrystal with average diameter of 360?±?9?nm could be obtained. X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) confirmed the decreased crystallinity of nanoparticles stabilized by F68. The results of in vitro study demonstrated that the saturation solubility and dissolution rate of simvastatin nanocrystals were enhanced by 1 fold and 4 fold respectively, compared with crude simvastatin and the dissolution rate improved with the decrease in particle size. The C(max) and AUC((0-24?h)) values of simvastatin nanocrystal group were approximately 1.50-fold and 1.44-fold greater than that of simvastatin nanocrystal group, respectively. Additionally, the T(max) of simvastatin nanocrystal group was 1.99?h, comparing to 2.88?h of reference group. Conclusion: Sonoprecipitation method can produce small and uniform simvastatin nanocrystals with an improved saturation solubility, dissolution rate and oral bioavailability.  相似文献   

9.
To improve the dissolution and oral absorption of Rhizoma corydalis decumbentis extracts (RCDE), a famous traditional Chinese herbal medicine which contains poorly water-soluble active components, self-emulsifying drug-delivery systems (SEDDS) were designed and evaluated in vitro and in vivo for the first time. Six formulations were prepared, and pseudoternary phase diagrams were constructed to identify the efficient self-emulsication region through the modified visual test. The optimized formulation consisted of 45% Solutol, 40% ethyl oleate, and 15% Transcutol P. The mean droplet size distribution of the optimized SEDDS was less than 100?nm. The release of the active components (protopine and tetrahydropalmatine) in RCDE from SEDDS hard gelatin capsules showed a faster rate in comparison with the commercial tablets. After oral administration of RCDE SEDDS capsules or the commercial tablets to fasted rats, the relative bioavailability of SEDDS capsules for protopine and tetrahydropalmatine was 209.7% and 133.2% compared with commercial tablets, respectively. Our study indicated that SEDDS has the potential to improve the bioavailability of traditional Chinese medicines, in which many active components are hydrophobic, such as RCDE.  相似文献   

10.
Abstract

The preparation of a new scored 250 mg theophylline tablet is described, for which effects of particle size of the active principle, aspects of granulation and changes in tabletting settings were investigated.

In vitro studies showed the dissolution rate from tablets prepared from theophylline of commercial quality (50 μm) or of selected particle size (30 μm) to be faster than that from tablets prepared from micronized theophylline (10 μm). In vivo studies in dog showed that only the tablet from theophylline of selected particle size has the same bioavailability as an aqueous solution.

The scale up study showed that the characteristics of the tablets, including dissolution rate, are independent of the formulation factors.  相似文献   

11.
A nanoparticulate system; cubosomes has been suggested to support the controlled release of Telmisartan (TEL), a poorly water-soluble medication. Four distinctive formulae were selected according to the results of three estimated responses. The liquid cubosomes were successfully adsorbed onto Aerosil 380 to form granules. The formulae were evaluated for their flow properties. The best granules were compressed into tablets suitable for oral administration. The tablets were evaluated for its performance. The in vivo study of the best selected cubosomal tablets was checked after oral administration in the blood of albino rabbits utilizing an HPLC method. Results revealed that the highest EE was shown in formulae C5 (59.68?±?1.3). All the prepared formulae had particle size less than 500?nm with PDI < 0.5 and the highest zeta potential results were observed in C5, C7, C9, C11 and C12 (>30?mv). A7 and A9 prepared using Aerosil 380 showed a perfect flowability. After 1?h of dissolution testing, the commercial product showed a 66% drug release while the release of all cubosomal formulae didn’t exceed 35% during the first hour reaching a 85% of the drug released at the end of 24?h. A7 was selected for the in vivo study; Tmax of TEL absorption is increased for cubosomal formula by three folds indicating sustained release pattern. The relative bioavailability is also increased by 2.6 fold. The investigation proposed the rationality of cubosome to figure an effective controlled release tablets to improve its bioavailability and expand its activity.  相似文献   

12.
Context: The clinical applications of cilostazol (CLZ) are limited by its low aqueous solubility (<5?µg/ml) and high biovariability.

Objective: The aim of this study was to enhance the solubility of CLZ by forming inclusion complexes (ICs) with beta cyclodextrin (β-CD) and formulating them into oral disintegrating tablets.

Methods: Phase solubility study of CLZ with β-CD was performed in water. Job’s plot was constructed to determine the stoichiometry of ICs. ICs, prepared by spray-drying technique, were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, hot stage microscopy, powder X-ray diffraction and nuclear magnetic resonance. Molecular modeling studies were performed to understand the mode of interaction of CLZ with β-CD. The formulation process was undertaken using a reproducible design of experiment generated model, attained by variation of diluents and disintegrants at three levels. Tablets were evaluated for drug content, hardness, friability, disintegration time (DT), wetting time (WT) and dissolution profiles.

Results and discussion: Phase solubility studies suggested an AL type curve with stability constant (Ks) of 922.52?M?1. Job’s plot revealed 1:2 stoichiometry. All analytical techniques confirmed inclusion complexation. Molecular modeling revealed dispersive van der Waals interaction energy as a major contributor for stabilization of complex. The spray-dried complexes showed higher solubility and faster dissolution compared to plain CLZ. The optimized formulation showed DT of 11.1?±?0.8?s, WT of 8.7?±?0.9?s and almost complete dissolution of CLZ in 15?min.

Conclusion: The prepared tablets with low DT and fast dissolution will prove to be a promising drug delivery system with improved bioavailability and better patient compliance.  相似文献   

13.
The aim of this study is to assess pullulan as a novel steric stabilizer during the wet-stirred media milling (WSMM) of griseofulvin, a model poorly water-soluble drug, and as a film-former in the preparation of strip films via casting–drying the wet-milled drug suspensions for dissolution and bioavailability enhancement. To this end, pullulan films, with xanthan gum (XG) as thickening agent and glycerin as plasticizer, were loaded with griseofulvin nanoparticles prepared by WSMM using pullulan in combination with sodium dodecyl sulfate (SDS) as an ionic stabilizer. The effects of drug loading and milling time on the particle size and suspension stability were investigated, as well as XG concentration and casting thickness on film properties and dissolution rate. The nanosuspensions prepared with pullulan–SDS combination were relatively stable over 7 days; hence, this combination was used for the film preparation. All pullulan-based strip films exhibited excellent content uniformity (most?<3% RSD) despite containing only 0.3–1.3?mg drug, which was ensured by the use of precursor suspensions with?>5000 cP viscosity. USP IV dissolution tests revealed fast/immediate drug release (t80?相似文献   

14.
Objective: The current investigation is focused on the formulation and in vivo evaluation of optimized solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of amisulpride (AMS) for improving its oral dissolution and bioavailability.

Methods: Liquid SNEDDS (L-SNEDDS) composed of Capryol? 90 (oil), Cremophor® RH40 (surfactant), and Transcutol® HP (co-surfactant) were transformed to solid systems via physical adsorption onto magnesium aluminometasilicate (Neusilin US2). Micromeretic studies and solid-state characterization of formulated S-SNEDDS were carried out, followed by tableting, tablet evaluation, and pharmacokinetic studies in rabbits.

Results: Micromeretic properties and solid-state characterization proved satisfactory flow properties with AMS present in a completely amorphous state. Formulated self-nanoemulsifying tablets revealed significant improvement in AMS dissolution compared with either directly compressed or commercial AMS tablets. In vivo pharmacokinetic study in rabbits emphasized significant improvements in tmax, AUC(0–12), and AUC(0–∞) at p?<?.05 with 1.26-folds improvement in relative bioavailability from the optimized self-nanoemulsifying tablets compared with the commercial product.

Conclusions: S-SNEDDS can be a very useful approach for providing patient acceptable dosage forms with improved oral dissolution and biovailability.  相似文献   

15.
The preparation of a new scored 250 mg theophylline tablet is described, for which effects of particle size of the active principle, aspects of granulation and changes in tabletting settings were investigated.

In vitro studies showed the dissolution rate from tablets prepared from theophylline of commercial quality (50 μm) or of selected particle size (30 μm) to be faster than that from tablets prepared from micronized theophylline (10 μm). In vivo studies in dog showed that only the tablet from theophylline of selected particle size has the same bioavailability as an aqueous solution.

The scale up study showed that the characteristics of the tablets, including dissolution rate, are independent of the formulation factors.  相似文献   

16.
Abstract

The main objective of this study is to increase the dissolution rate of gliquidone using its solid dispersions with pluronic F-68 by solvent evaporation method. The solid dispersion of the drug with pluronic at ratio 1:3 showed the highest dissolution efficiency (50.7%) after 10?min, so it was incorporated in fast dissolving tablets. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were used to study the interaction between gliquidone and pluronic in the solid state. The FTIR spectroscopic studies revealed no chemical interaction between the drug and pluronic, while the DSC results indicated the amorphous state of gliquidone in the solid dispersion. A 32 full factorial design was used to study the effect of varying concentrations of croscarmellose and sodium starch glycolate as superdisintegrants on the disintegration time and the percentage released after 10?min. The optimized formula showed a disintegration time of 39.1?±?1.2?s and 85.43%?±?5.16% released after 10?min and was selected for the in-vivo studies in rabbits. The selected formula showed significant enhancement of gliquidone bioavailability, about 1.8 times compared with the commercial Glurenor tablets.  相似文献   

17.
Pyridostigmine bromide (PB) sustained-release (SR) pellets were developed by extrusion-spheronization and fluid-bed methods using Taguchi experimental and 23 full factorial design. In vitro studies, the 23 full factorial design was utilized to search for the optimal SR pellets with specific release rate at different time intervals (release percent of 2, 6, 12, and 24 hr were 6.24, 33.48, 75.18, and 95.26%, respectively) which followed a zero-order mechanism (n = 0.93). The results of moisture absorption by Karl Fischer has shown the optimum SR pellets at 25°C/60% RH, 30°C/65% RH, and 40°C/75% RH chambers from 1 hr-4 weeks, attributing that the moisture absorption was not significantly increased. In the in vivo study, the results of the bioavailability data showed the Tmax (from 0.65 ± 0.082 hr-4.82 ± 2.12 hr) and AUC0-30 hr (from 734.88 ± 230.68 ng/mL.hr-1454.86 ± 319.28 ng/mL.hr) were prolonged and increased, as well as Cmax (from 251.87 ± 27.51 ng/mL-115.08 ± 14.87 ng/mL) was decreased for optimum SR-PB pellets when compared with commercial immediate-release (IR) tablets. Furthermore, a good linear regression relationship (r = 0.9943) was observed between the fraction dissolution and fraction absorption for the optimum SR pellets. In this study, the formulation design not only improved the hygroscopic character of PB but also achieved the SR effect.  相似文献   

18.
Abstract

The present study involved the design and development of oral bioadhesive pellets of eplerenone. A solid dispersion of eplerenone was developed with a hydrophilic carrier, polyvinyl caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®). Bioadhesive pellets were prepared from this solid dispersion using a combination of HPMC K4M and Carbopol 934P. Both the solid dispersion and the pellets were evaluated for various physicochemical properties such as solubility, entrapment efficiency, drug content, surface morphology, mucoadhesion and swelling behavior. Analysis carried out using FT-IR, DSC and XRD found no interaction between the eplerenone and excipients. The solid dispersion had irregular-shaped smooth-surfaced particles of diameter 265?±?105.5?μm. In TEM analysis, eplerenone particles of size 79–120?nm were found. The solubility and dissolution of eplerenone in the Soluplus®-based solid dispersion were 5.26 and 2.50 times greater, respectively. Investigation of the swelling behavior of the pellets showed that the thickness of the gel layer increased continuously over the duration of the study. Moreover, a correlation was observed between the thickness and strength of the gel layer and the percentage release. The mechanism of drug release was found to be non-Fickian (anomalous), with the release kinetics approaching first-order kinetics. The bioavailability of the eplerenone bioadhesive pellet formulation was studied using Wistar rats and was found to be improved. An in vivo mucoadhesion study showed that the pellets are retained for 24?h in rabbits. It was concluded that Soluplus® had a positive effect on the solubility and dissolution of pellets without affecting the bioadhesion.  相似文献   

19.
Background: The exposure of UG558 was not good enough using traditional microsuspensions. Aim: The aim of this study was to find out whether nanosuspensions were a better choice compared with a microsuspension, for an acidic substance with a water solubility in the order of 2 μM (pH 6.8, small intestinal pH) and no permeability limitations. Methods: UG558 was ground by a planetary ball mill. The particle size was measured by laser diffraction and the stability of the particle sizes was followed. The pharmacokinetic parameters of UG558 administered as nanosuspension have been compared with those from microsuspension using rat as in vivo specie. Both formulations were administered orally. The nanosuspension was also administered intravenously. Results: The particle size of the nanosuspensions was about 190 nm and about 12 μm for the microsuspensions. At the administered doses, solutions were no alternative (e.g. due to limited solubility). Already at the lowest dose, 5 μmol/kg (5 ml/kg), a significant difference was observed between the two suspensions. These results were further confirmed at a high dose (500 μmol/kg, 5 mL/kg). Thus, the study demonstrated a clear correlation between particle size and in vivo exposures, where the nanosuspensions provided the highest exposure. Furthermore, no adverse events were observed for the substance nor the nanosuspension formulations (i.e., the particles) in spite of the higher exposures obtained with the nanoparticles. To make it possible to calculate the bioavailability, 5 μmol/kg doses of the nanosuspensions (5 ml/kg) were also administered intravenously. No adverse events were observed. Conclusions: The nanoparticles have a larger surface, resulting in faster in vivo dissolution rate, faster absorption, and increased bioavailability, compared to microparticles. The lower overall bioavailability observed at the high dose, compared with the low dose, was due to a combination of low dissolution rate, low solubility, and a narrow intestinal absorption window for UG558.  相似文献   

20.
The aim of our investigation was to develop and characterize self-microemulsifying drug delivery systems (SMEDDS) of Pueraria lobata isoflavone to improve its in vitro dissolution and oral absorption in beagle dogs. SMEDDS consisted of oil (ethyl oleate), a surfactant (Tween 80), and a cosurfactant (Transcutol P). In all the SMEDDS, the level of Pueraria lobata isoflavone was fixed at 20% w/w of the vehicle. The in vitro self-microemulsification properties and droplet size analysis of SMEDDS were studied following their addition to water under mild agitation. A pseudoternary phase diagram was constructed identifying the efficient self-microemulsification region. From these investigations, an optimized formulation was selected and its dissolution and bioavailability were compared with a tablet formulation in beagle dogs. The in vitro dissolution rate of puerarin from SMEDDS was more than threefold faster than that from Yufengningxin tablets (Pueraria lobata isoflavone tablets). A 2.5-fold increase in the relative bioavailability was observed for the SMEDDS compared with Yufengningxin tablets. The absolute bioavailability of the SMEDDS was 82.32 ± 15.51%, which was significantly improved compared with that of Yufengningxin tablets. These results demonstrate the potential of SMEDDS as an efficient way of improving the oral absorption of Pueraria lobata isoflavone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号