首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect.

Methods: Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG2 liver cancer cells. Free piperine or piperine-loaded Soluplus®/TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2?mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo.

Results: The diameter of piperine-loaded Soluplus®/TPGS (4:1) mixed micelles was about 61.9?nm and the zeta potential –1.16?±?1.06?mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus®/TPGS. The release results in vitro showed that the piperine-loaded Soluplus®/TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p?Conclusion: The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine-loaded Soluplus®/TPGS mixed micelles are an effective strategy to deliver piperine for cancer therapy.  相似文献   

2.
Objective: The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability.

Methods: The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7?mg/kg) in male Wistar rats.

Results: The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20?nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution.

Conclusion: These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.  相似文献   

3.
Microspheres have been prepared from the resorbable linear polyester of β-hydroxybutyric acid (polyhydroxybutyrate, PHB) by the solvent evaporation technique and investigated in vitro and in vivo. Biocompatibility of the microspheres has been proved in tests in the culture of mouse fibroblast cell line NIH 3T3 and in experiments on intramuscular implantation of the microspheres to Wistar rats for 3 months. Tissue response to the implantation of polymeric microspheres has been found to consist in a mild inflammatory reaction, pronounced macrophage infiltration that increases over time, involving mono- and poly-nuclear foreign body giant cells that resorb the polymeric matrix. No fibrous capsules were formed around polymeric microparticles; neither necrosis nor any other adverse morphological changes and tissue transformation in response to the implantation of the PHB microparticles were recorded. The results of the study suggest that polyhydroxybutyrate is a good candidate for fabricating prolonged-action drugs in the form of microparticles intended for intramuscular injection.  相似文献   

4.
The aim was to prepare an optimized zolmitriptan (ZT)-loaded transfersome formulation using Box–Behnken design for improving the bioavailability by nasal route for quick relief of migraine and further to compare with a marketed nasal spray. Here, three factors were evaluated at three levels. Independent variables include: amount of soya lecithin (X1), amount of drug (X2) and amount of tween 80 (X3). The dependent responses were vesicle size (Y1), flexibility index (Y2) and regression coefficient of drug release kinetics (Y3). Prepared formulations were evaluated for physical characters and an optimal system was identified. Further, in vivo pharmacokinetic study was performed in male wistar rats to compare the amount of drug in systemic circulation after intranasal administration. Optimized ZT-transfersome formulation containing 82.74?mg of lecithin (X1), 98.37?mg of zolmitriptan (X2) and 32.2?mg of Tween 80 (X3) and had vesicle size of 93.3?nm, flexibility index of 20.25 and drug release regression coefficient of 0.992. SEM picture analysis revealed that the vesicles were spherical in morphology and had a size more than 1?µm. The formulations were found to be physically stable upon storage at room temperature up to 2?months period, as there were no significant changes noticed in size and ZP. The nasal bioavailability of optimized transfersome formulation was found to be increased by 1.72 times than that of marketed nasal spray (Zolmist®). The design and development of zolmitriptan as transfersome provided improved nasal delivery over a conventional nasal spray for a better therapeutic effect.  相似文献   

5.
The aim of this study was to develop Cyclosporin A (CsA) sustained-release pellets which could maintain CsA blood concentration within the therapeutic window throughout dosing interval and to investigate the in vitro–in vivo correlation (IVIVC) in beagle dogs. The CsA sustained-release pellets (CsA pellets) were prepared by a double coating method and characterized in vitro as well as in vivo. Consequently, the CsA pellets obtained were spherical in shape, with a desirable drug loading (7.18?±?0.17?g/100?g), good stability and showed a sustained-release effect. The Cmax, Tmax and AUC0–24 of CsA pellets from the in vivo pharmacokinetics evaluation was 268.22?±?15.99?ng/ml, 6?±?0?h and 3205.00?±?149.55?ng·h/ml, respectively. Compared with Neoral®, CsA pellets significantly prolonged the duration of action, reduced the peak blood concentration and could maintain a relatively high concentration level till 24?h. The relative bioavailability of CsA pellets was 125.68?±?5.37% that of Neoral®. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the pellets. In conclusion, CsA pellets which could ensure a constant systemic blood concentration within the therapeutic window for 24?h were prepared successfully. Meanwhile, this formulation possessed a good IVIVC.  相似文献   

6.
Abstract

The aim of this work was to assess the performance of resin as an ocular delivery system. Timolol maleate (TM) was chosen as the model drug and an ion exchange resin (IER) as the carrier. The drug–resin complex was prepared using an oscillation method and then characterized regarding particle size, zeta potential, morphology, and drug content. After in vitro drug release study and corneal permeation study were performed, in vivo studies were performed in New Zealand albino rabbits using a suspension with particles sized 4.8?±?1.2?μm and drug loading at 43.00?±?0.09 %. The results indicate that drug released from the drug–resin ophthalmic suspension permeated the cornea and displayed a sustained-release behavior. Drug levels in the ocular tissues after administration of the drug–resin ophthalmic suspension were significantly higher than after treatment with an eye drop formulation but were lower in body tissues and in the plasma. In conclusion, resins have great potential as effective ocular drug delivery carriers to increase ocular bioavailability of timolol while simultaneously reducing systemic drug absorption.  相似文献   

7.
We tested the tissue reactions and mechanical strength of a novel biodegradable craniomaxillofacial plating system, Inion CPS™, in the course of degradation. Plates and screws composed of l-lactide, d-lactide and trimethylene carbonate were implanted to the mandible and dorsal subcutis of 12 sheep. The animals were sacrificed at 6–156 weeks. Histological evaluation was done using paraffin and methylmetacrylate techniques. Degradative and mechanical properties during the follow-up were measured both of in vivo and in vitro implants. In light microscopy, the in vivo implant material began to fragment at 52 weeks and could not be detected at 104 weeks. No significant foreign body reactions were seen in the mandibles. The dorsal subcutis disclosed mild reactions, which were, however, not of clinical significance. The implants in vitro maintained their entire mass for 26 weeks and lost 63–80% of the mass by week 104. The inherent viscosity of the implants in vitro and in vivo diminished uniformly. The screws retained their shear strength for 12–16 weeks. The plates maintained their tensile strength for at least 6 weeks. The maximum capacity of the plates in 3-point bending tests diminished gradually by 87% in 26 weeks. In conclusion, the plates and screws examined maintain adequate strength for the healing period of a bone fracture or osteotomy, producing no harmful foreign body reactions. Dr Nieminen is a consultant for Inion Ltd., while the other co-authors do not have any conflicts of interest. Inion Ltd. has financed the costs related to the study sheep, including their housing.  相似文献   

8.
The aim of this study was to evaluate the in vitro and in vivo efficacy of paclitaxel–lapatinib-loaded Pluronic micelles. Lapatinib and pluronic sensitize the cancerous cells to paclitaxel via efflux pump inhibition. In addition, pluronic polymers can trigger intrinsic apoptosis pathways. Furthermore, micellar system can passively target the chemotherapeutic agents by enhanced permeability and retention effect. The paclitaxel–lapatinib-loaded micelles were characterized in means of encapsulation efficacy and size. The in vitro analyses were performed by MTT assay and uptake studies. Real-time imaging and in vivo anti-tumor efficacy studies were also performed. The prepared micelles have acceptable encapsulation ratio and size. Hemolysis assay confirmed that the micelles are hemo-compatible. MTT assay demonstrated that drug-loaded micelles have superior cytotoxicity compared with the naked drugs. The confocal microscopy and flowcytometry analyses showed that micelles are mainly internalized by endocytosis. According to the results of the in vivo imaging, the micelles are accumulated within liver. In vivo anti-tumor efficacy studies confirmed that tumor inhibition of drug-loaded micelles was significant compared to Intaxel®.  相似文献   

9.
Objective: Novel antibiotic Ramizol® is advancing to clinical trials for the treatment of gastrointestinal Clostridium difficile associated disease. Despite this, previous studies have shown a rapid plasma clearance upon intravenous administration and low oral bioavailability indicating pure drug is unsuitable for systemic infection treatment following oral dosing. The current study aims to investigate the development of poly-lactic-(co-glycolic) acid (PLGA) particles to overcome this limitation and increase the systemic half-life following subcutaneous and intramuscular dosing.

Significance: The development of new antibiotic treatments will help in combatting the rising incidence of antimicrobial resistance.

Methods: Ramizol® was encapsulated into PLGA nano and microparticles using nanoprecipitation and emulsification solvent evaporation techniques. Formulations were analyzed for particle size, loading level and encapsulation efficiency as well as in vitro drug release profiles. Final formulation was advanced to in vivo pharmacokinetic studies in Sprague–Dawley rats.

Results: Formulation technique showed major influence on particle size and loading levels with optimal loading of 9.4% and encapsulation efficiency of 92.06%, observed using emulsification solvent evaporation. Differences in formulation technique were also linked with subsequent differences in release profiles. Pharmacokinetic studies in Sprague–Dawley rats confirmed extended absorption and enhanced bioavailability following subcutaneous and intramuscular dosing with up to an 8-fold increase in Tmax and T1/2 when compared to the oral and IV routes.

Conclusions: Subcutaneous and intramuscular dosing of PLGA particles successfully increased systemic half-life and bioavailability of Ramizol®. This formulation will allow further development of Ramizol® for systemic infection eradication.  相似文献   


10.
Chitosan–gelatin polyelectrolyte complexes were fabricated and evaluated as tissue engineering scaffolds for cartilage regeneration in vitro and in vivo. The crosslinker for the gelatin component was selected among glutaraldehyde, bisepoxy, and a water-soluble carbodiimide (WSC) based upon the proliferation of chondrocytes on the crosslinked gelatin. WSC was found to be the most suitable crosslinker. Complex scaffolds made from chitosan and gelatin with a component ratio equal to one possessed the proper degradation rate and mechanical stability in vitro. Chondrocytes were able to proliferate well and secrete abundant extracellular matrix in the chitosan–gelatin (1:1) complex scaffolds crosslinked by WSC (C1G1WSC) compared to the non-crosslinked scaffolds. Implantation of chondrocytes-seeded scaffolds in the defects of rabbit articular cartilage confirmed that C1G1WSC promoted the cartilage regeneration. The neotissue formed the histological feature of tide line and lacunae in 6.5 months. The amount of glycosaminoglycans in C1G1WSC constructs (0.187 ± 0.095 μg/mg tissue) harvested from the animals after 6.5 months was 14 wt.% of that in normal cartilage (1.329 ± 0.660 μg/mg tissue). The average compressive modulus of regenerated tissue at 6.5 months was about 0.539 MPa, which approached to that of normal cartilage (0.735 MPa), while that in the blank control (3.881 MPa) was much higher and typical for fibrous tissue. Type II collagen expression in C1G1WSC constructs was similarly intense as that in the normal hyaline cartilage. According to the above results, the use of C1G1WSC scaffolds may enhance the cartilage regeneration in vitro and in vivo.  相似文献   

11.
The purpose of this study was to evaluate the technical feasibility of poly (ε-caprolactone-co-DL-lactide), P (CL/DL-LA), for injectable in situ forming implants (ISFI). The ISFI was prepared by dissolving P (CL/DL-LA) in N-methyl-2-pyrrolidone (NMP), and Testosterone undecanoate (TU) was used as model drug. The effect of various polymer concentrations, molecular weights (Mws) and drug loads on the drug release from the TU-loaded ISFI systems was investigated in vitro. The release of TU-loaded ISFI was also evaluated in rats. In addition, a subcutaneous rabbit model was used to evaluate the degradation and foreign-body reaction of P (CL/DL-LA) ISFI. The use of higher concentration of P (CL/DL-LA) with higher molecule weight and larger CL:DL-LA monomer ratio for the TU-loaded ISFI gave a slower drug release. The ISFI of 80/20 P (CL/DL-LA) (Mw 61?753):NMP 20:80 with 16% TU formulation increased serum testosterone levels in rats over a period of three months. The in vivo degradation and biocompatibility study of ISFI shows that P (CL/DL-LA) degrades by a process of bulk degradation and that the foreign-body reaction of this biomaterial is relatively mild. In summary, our investigations demonstrate that in situ parenteral drug delivery systems can be obtained from P (CL/DL-LA) solutions.  相似文献   

12.
The purpose of this study was to develop an in situ forming SAIB (sucrose acetate isobutyrate)-PLGA (poly (d, lactide-co-glycolide)) mixture matrix depot for sustained release of risperidone. The factors affecting the risperidone release kinetics were investigated to obtain further insight into the drug release mechanisms. The burst release in vitro was significantly reduced (4.95%) by using DMSO as solvent. And, increasing the PLGA content from 2 to 10% w/w decreased the initial release from 6.95 to 1.05%. The initial release in vivo decreased with increasing PLGA content (2.0% w/w PLGA, C max = 1161.7 ± 550.2 ng ml−1; 10% w/w PLGA, C max = 280.3 ± 98.5 ng ml−1). The persistence (AUC4–20 days) over 20 days increased from 76.8 ± 20.7 to 362.8 ± 75.0 ng d ml−1 by inclusion of 10% PLGA compared with the PLGA-free depot. These results demonstrate that the SAIB–PLGA mixture matrix depot could be useful as a sustained delivery system for risperidone.  相似文献   

13.
14.
15.
Purpose: Zaleplon (ZL) is a hypnotic drug prescribed for the management of insomnia and convulsions. The oral bioavailability of ZL was low (~30%) owing to poor water solubility and hepatic first-pass metabolism. The cornerstone of this investigation is to develop and optimize solid lipid nanoparticles (SLNs) of ZL with the aid of Box–Behnken design (BBD) to improve the oral bioavailability.

Methods: A design space with three formulation variables at three levels were evaluated in BBD. Amount of lipid (A1), amount of surfactant (A2) and concentration of co-surfactant (%) (A3) were selected as independent variables, whereas, particle size (B1), entrapment efficiency (B2) and zeta potential (ZP, B3) as responses. ZL-SLNs were prepared by hot homogenization with ultrasonication method and evaluated for responses to obtain optimized formulation. Morphology of nanoparticles was observed under SEM. DSC and XRD studies were examined to understand the native crystalline behavior of drug in SLN formulations. Further, in vivo studies were performed in Wistar rats.

Results: The optimized formulation with 132.89?mg of lipid, 106.7?mg of surfactant and 0.2% w/v of co-surfactant ensued in the nanoparticles with 219.9?±?3.7?nm of size, ?25.66?±?2.83?mV surface charge and 86.83?±?2.65% of entrapment efficiency. SEM studies confirmed the spherical shape of SLN formulations. The DSC and XRD studies revealed the transformation of crystalline drug to amorphous form in SLN formulation. In conclusion, in vivo studies in male Wistar rats demonstrated an improvement in the oral bioavailability of ZL from SLN over control ZL suspension.

Conclusions: The enhancement in the oral bioavailability of ZL from SLNs, developed with the aid of BBD, explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery of this poorly soluble drug.  相似文献   

16.
Diabetes is a chronic disease that requires daily treatment to maintain a stable blood glucose level. Sustained-release formulations can thus benefit the treatment of diabetes by reducing the repeated administration of therapeutics. Our study aimed to develop a sustained-release platform for exenatide that is biocompatible and capable of mass production. Vesicular phospholipid gels (VPGs) are semisolid phospholipid dispersions with controlled release profiles. Exenatide-VPGs prepared via simple magnetic stirring showed excellent biocompatibility with an average particle size of about 15?μm after redispersion. VPGs were shown to achieve sustained release for up to 21 days in vitro with no obvious burst effect. The in vivo release study showed that VPGs sustained the release of the exenatide for up to 11 days. Moreover, after subcutaneous injection of the exenatide-VPGs in the diabetic rats, the hypoglycemic effect lasted for 10 days compared with exenatide solution. In sum, the exenatide-VPGs system represents a promising sustained-release formulation for exenatide with a long-acting therapeutic efficacy in vivo.  相似文献   

17.
A significant barrier to oral insulin delivery is its enzymatic degradation in the gut. Nano-sized polymer-insulin polyelectrolyte complexes (PECS) have been developed to protect insulin against enzymatic degradation. Poly(allylamine) (Paa) was trimethylated to yield QPaa. Thiolation of Paa and QPaa was achieved by attaching either N-acetylcysteine (NAC) or thiobutylamidine (TBA) ligands (Paa-NAC/QPaa-NAC and Paa-TBA/QPaa-TBA thiomers). PEC formulations were prepared in Tris buffer (pH 7.4) at various polymer: insulin mass ratios (0.2:1–2:1). PECS were characterized by %transmittance of light and photon correlation spectroscopy. Insulin complexation efficiency and enzyme-protective effect of these complexes were determined by HPLC. Complexation with insulin was found to be optimal at mass ratios of 0.4–1:1 for all polymers. PECS in this mass range were positively-charged (20–40?mV), nanoparticles (50–200?nm), with high insulin complexation efficiency (>90%). Complexation with TBA polymers appeared to result in disulfide bridge formation between the polymers and insulin. In vitro enzymatic degradation assays of QPaa, Paa-NAC, and QPaa-NAC PECS showed that they all offered some protection against insulin degradation by trypsin and α-chymotrypsin, but not from pepsin. QPaa-NAC complexes with insulin are the most promising formulation for future work, given their ability to offer protection against intestinal enzymes. This work highlights the importance of optimizing polymer structure in the delivery of proteins.  相似文献   

18.
A hybrid material comprised of beta-tricalcium phosphate (β-TCP) and sodium lauryl sulfate (SLS) was prepared using a mechanochemical process, examined using particle size analysis, IR spectroscopy, 31P, 23Na, and 13C solid-state NMR spectroscopy, and calcium dissolution experiments, and probed for in vitro remineralization of subsurface enamel lesions. Our results suggest that while the 31P environments of β-TCP remain unchanged during solid-state processing, there is noticeable shifting among the SLS 23Na and 13C environments. Therefore, given the structure of β-TCP, along with our IR examinations and calcium dissolution isotherms, SLS appears to interface strongly with the cation deficient C3 symmetry site of the β-TCP hexagonal crystal lattice with probable emphasis placed on the underbonded CaO3 polyhedra. To demonstrate the utility of the surface-active TCP material in dental applications, we combined the TCP–SLS with 5,000 ppm F (NaF) and evaluated the remineralization potential of subsurface enamel lesions via an in vitro remineralization/demineralization pH cycling dental model. Using surface and longitudinal microhardness measurements, the TCP–SLS plus 5,000 ppm F system was found to significantly boost remineralization of subsurface enamel lesions, with microhardness values increasing up to 30% greater than fluoride alone.  相似文献   

19.
In this work, PEG–PLLA electrospun fibers were developed as a new controlled release system for macrolide antibiotic drug brefeldin A (BFA). SEM and XRD analyses of the BFA-loaded PEG–PLLA fibers revealed that the average diameter of fibers was below 950 nm with smooth surfaces, and the drug was well incorporated into the fibers in amorphous form. The release profiles of BFA in PBS were measured by HPLC, demonstrating that the controlled release of BFA could be gained for long time. The in vitro antitumor activity against human liver carcinoma HepG2 cells of the fibers containing 3%, 6%, 9%, 12% and 15% BFA were examined by MTT method, and the results showed that cell growth inhibition rates at 72 h were 64%, 77%, 80%, 81% and 85%, respectively. These results strongly suggested that the BFA/PEG–PLLA fibers had an effect of controlled release of BFA and were suitable for postoperative chemotherapy of cancers.  相似文献   

20.
Puerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy. Pseudo-ternary phase diagrams were constructed to investigate the effects of different oil on the emulsifying performance of the blank ME. Intestinal mucosal injury test was conducted to evaluate safety of PPC-ME, and no sign of damage on duodenum, jejunum and ileum of rats was observed using hematoxylin-eosin staining. In pharmacokinetic study of PPC-ME, a significantly greater Cmax (1.33?µg/mL) was observed when compared to puerarin (Cmax 0.55?µg/mL) or PPC (Cmax 0.70?µg/mL); the relative oral bioavailability of PPC-ME was 3.16-fold higher than puerarin. In conclusion, the ME combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of puerarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号