首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the spray-drying process on the ability of engineered lipid-core nanocapsules to protect tretinoin against UV degradation was evaluated. This approach represents a technological alternative to improve the microbiological stability, storage and transport properties of such formulations. Tretinoin-loaded lipid-core nanocapsules or tretinoin-loaded nanoemulsion were dispersed in lactose (10% w/v) and fed in the spray-drier to obtain a solid product (spray-dried powder containing tretinoin-loaded nanocapsules or nanoemulsion--SD-TTN-NCL or SD-TTN-NE, respectively). SD-TTN-NE showed a lower (p < or = 0.05) percentage of encapsulation (89 +/- 1%) compared to SD-TTN-NCL (94 +/- 2%). Redispersed SD-TTN-NCL and SD-TTN-NE showed z-average sizes of 204 +/- 2 nm and 251 +/- 9 nm, which were close to those of the original suspensions (220 +/- 3 nm and 239 +/- 14 nm, respectively). Similar percentage of photodegradation were determined for tretinoin loaded in nanocapsules (26.15 +/- 4.34%) or in the respective redispersed spray-dried powder (28.73 +/- 6.19 min) after 60 min of UVA radiation exposure (p > 0.05). Our experimental design showed for the first time that spray-dried lipid-core nanocapsules are able to protect tretinoin against UVA radiation, suggesting that the drying process did not alter the supramolecular structure of the lipid-core nanocapsules. Such powders are potential intermediate products for the development of nanomedicines containing tretinoin.  相似文献   

2.
Objective: The aim of the present investigation was to evaluate the use of spray-dried O-carboxymethyl chitosan (OCMCS) as potential hydrophilic matrix excipient for sustained release of drug.

Methods: The polymer was synthesized from chitosan, then spray-dried and characterized. Tablets with different OCMCS concentrations (80, 50, 30, 5 and 2% w/w), containing diltiazem (DTZ) as model drug, were prepared for direct compression (DC) and after the wet granulation method (WG).

Results: The spray-dried OCMCS powder was spherical, with a smooth surface and an average size of 2.2?µm. The tablets prepared for WG disintegrated in time less than 30?min. The tablets obtained for DC presented high retention of the drug, with zero order or Higuchi release kinetic. There was a direct relationship between the OCMCS concentration and the release ratio, swelling degree and water uptake behavior. DC tablets containing 80% OCMCS presented behavior as an effective swelling-control system. The DC tablets with 5% OCMCS showed a similar release profile at formulations with 30% HPMC.

Conclusion: Spray-dried OCMCS showed great potential as hydrophilic matrices for drug-sustained release.  相似文献   

3.
Context: Our group previously reported the development of dexamethasone-loaded polymeric nanocapsules as an alternative for topical dermatological treatments. Objective: Our study aimed to prepare and characterize a hydrogel containing this system to improve the effectiveness of the glucocorticoid for cutaneous disorders. Methods: For the antiproliferative activity assay, a dexamethasone solution and D-NC were tested on Allium cepa root meristem model. D-NC were prepared by the interfacial deposition of preformed polymer. Hydrogels were prepared using Carbopol Ultrez® 10 NF, as polymer, and characterized according to the following characteristics: pH, drug content, spreadability, viscosity, and in vitro drug release. Results and Discussion: Nanocapsules showed mean particle size and zeta potential of 201 ± 6 and ?5.73 ± 0.42 nm, respectively. They demonstrated a lower mitotic index (4.62%) compared to free dexamethasone (8.60%). Semisolid formulations presented acidic pH values and adequate drug content (between 5.4% and 6.1% and 100% and 105%, respectively). The presence of nanocapsules in hydrogels led to a decrease in their spreadability factor. Intact nanoparticles were demonstrated by TEM as well as by dynamic light scattering (mean particle size < 300 nm). In vitro studies showed a controlled dexamethasone release from hydrogels containing the drug associated to the nanocapsules following the Higuchi's squared root model (k = 20.21 ± 2.96 mg/cm2/h1/2) compared to the hydrogels containing the free drug (k = 26.65 ± 2.09 mg/cm2/h1/2). Conclusion: Taking all these results together, the hydrogel containing D-NC represent a promising approach to treat antiproliferative-related dermatological disorders.  相似文献   

4.
The possibility to obtain microcapsules or microspheres for controlled release by spray-drying is evaluated. Drugs of different solubilities like theophylline and sodium sulfamethazine, with Eudragit RS as coating polymer, are chosen.

The polymer is used, either dissolved in an hydroalcoholic solution or suspended (pseudolatex) in water, in different weight ratios with the drug. The obtained solution or suspension is spray-dried.

Scanning electron microscope analysis of the powders reveals no sign of microencapsulation. Moreover, only a fraction of the particles has a spherical shape.

For each spray-dried powder, a part of the obtained particles is compressed into tablets, and the rest is stored.

Dissolution studies in distilled water at 37 C are performed on powders and tablets.

While the uncompressed microparticles do not give any controlled release, the tablets show an ability in slowing down drug delivery greater than the one obtained with the traditional methods.  相似文献   

5.
Background: The evaluation of lubricity or flowability of pharmaceutical powders is important for consistent production and quality control of drug products. However, there have been only a few studies on quantitative measurements of the properties of lubricated powders.

Method: Magnesium stearate (MgSt) and sodium stearyl fumarate (SSF) were used as lubricants. Lubricated powders were prepared by adding lubricants to spray-dried lactose under different conditions. To evaluate flowability, the vibrating tube method was used. In this method, the vibration amplitude of the tube is increased at a constant rate, and the mass of the powder discharged from the tube is recorded. Flowability profiles, i.e. the relationships between the mass flow rate and vibration acceleration, were obtained experimentally. To characterize static and dynamic friction properties of powders, critical vibration acceleration required to make powder particles flow and the average mass flow rate were determined.

Results: Addition of 0.5% MgSt was sufficient for the reduction of static friction between particles. Blending time of the lubricants had little effect on the average mass flow rate of lubricated powders. On the other hand, addition of SSF resulted in an increase in static friction at the beginning of blending, and after a certain blending time, flowability improved. The combination of MgSt and SSF improved both static and dynamic friction properties irrespective of the blending time.

Conclusion: The vibrating tube method can be used to evaluate the flowability properties of lubricated powders, and the experimental results provide useful information on the production of pharmaceutical solid dosage forms.  相似文献   

6.
Objective: Development of a hydrogel containing rutin at 0.025% (w/w) and evaluation of its in vivo efficacy in cutaneous wound healing in rats.

Methods: Hydrogels were prepared using Carbopol Ultrez® 10 NF and an aqueous dispersion of rutin in polysorbate 80. Hydrogels were characterized by means of pH measurement, rheological and spreadability analysis and rutin content determination by liquid chromatography. The in vivo healing effect was evaluated through the regression of skin lesions in rats and by analysis of oxidative stress.

Results and discussion: Hydrogels showed adequate pH values (5.50–6.50) and pseudoplastic non-Newtonian behavior. After 5 days of treatment of wounds, hydrogels containing rutin presented a higher decrease in the wound area compared to the control hydrogels. Analysis of the oxidative stress showed a decrease in lipid peroxidation and protein carbonyl content as well as an increase in catalase activity after the treatment with the hydrogel containing rutin. Furthermore, this treatment increased total protein levels.

Conclusion: This study shows for the first time the feasibility of using dermatological formulations containing rutin to improve skin wound healing.  相似文献   

7.
A comparison between two routes of raw powder preparation, namely spray drying and grinding, for 3D printing of hydroxyapatite was carried out. Hydroxyapatite particles prepared by the spray drying technique were spherical in shape whereas the grinding route gave irregular-shaped agglomerates. Spray-dried powders had higher tap density than milled powders, however milled powders yielded 3DP specimens with greater green density and strength. After sintering at 1300 °C for 1 and 5 h, samples fabricated from milled powders showed a 32% higher in sintered density, a 20% lower in porosity and approximately two times higher flexural modulus and strength than samples fabricated from spray-dried powders. This difference was related to the better packing characteristics of milled powders which promoted improved inter- and intra-particle densification during high temperature sintering compared to the spray-dried powders which yielded only high intra-particle densification, but lower inter-particle densification.  相似文献   

8.
Context: Supercritical fluid methods offer an alternative to conventional mixing methods, particularly for heat sensitive drugs and where an organic solvent is undesirable.

Objective: To design, develop and construct a unit for the particles from a gas-saturated suspension/solution (PGSS) method and form endogenous progesterone (PGN) dispersion systems using SC-CO2.

Materials and methods: The PGN dispersions were manufactured using three selected excipients: polyethylene glycol (PEG) 400/4000 (50:50), Gelucire 44/14 and D-α-tocopheryl PEG 1000 succinate (TPGS). Semisolid dispersions of PGN prepared by PGSS method were compared to the conventional methods; comelting (CM), cosolvent (CS) and physical mixing (PM). The dispersion systems made were characterized by Raman and Fourier transform infrared (FTIR) spectroscopies, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), PGN recovery, uniformity and in vitro dissolution, analyzed by high-performance liquid chromatography (HPLC).

Results: Raman spectra revealed no changes in the crystalline structure of PGN treated with SC-CO2 compared to that of untreated PGN. XRPD and FTIR showed the presence of peaks and bands for PGN confirming that PGN has been incorporated well with each individual excipient. All PGN dispersions prepared by the PGSS method resulted in the improvement of PGN dissolution rates compared to that prepared by the conventional methods and untreated PGN after 60 min (p value?Conclusion: The novel PGN dispersions prepared by the PGSS method offer the great potential to enhance PGN dissolution rate, reduce preparation time and form stable crystalline dispersion systems over those prepared by conventional methods.  相似文献   

9.
ABSTRACT

In this paper, we describe a new process for the preparation of drug loaded nanocapsules using a membrane contactor which may be scaled up for industrial applications. Nanocapsules are prepared according to the nanoprecipitation method. The organic phase (solvent, polymer, oil, and drug) is pressed through the pores of an ultrafiltration membrane via the filtrate side. The aqueous phase (water and surfactant) circulates inside the membrane module, and sweeps away the nanocaspules forming at the pore outlets. Two model drugs are selected for the preparation of drug loaded nanocapsules: indomethacin and vitamin E. It is shown that indomethacin loaded nanocapsules with a mean diameter of 240 nm and vitamin E loaded nanocapsules with a mean diameter of 230 nm are obtained with a 150,000 daltons ultrafiltration membrane, a transmembrane pressure of 3 bar, and a crossflow rate of 1.7 m.s? 1. High fluxes are also obtained (around 0.6 m3/h.m2), leading to the preparation of 1.8 10? 3 m3 drug loaded nanocapsules in 8 min. The advantage of this membrane contactor compared to other processes for drug loaded nanocapsules preparation is shown to be its scale-up ability.  相似文献   

10.
Context: Ophthalmic solutions are usually filled in a plastic bottle due to its durability and disposability. In Japan, photostability is one of the concerns for the quality control because an eye drop bottle must be a transparent container.

Objective: The present work studied the effect of textured eye drop bottles on its light blocking to improve the photostability of ophthalmic solutions.

Materials and methods: We investigated the photostability of Pranoprofen ophthalmic solution filled in a variety of textured eye drop bottles. Pranoprofen content was analyzed by high-performance liquid chromatography and surface structure of textured eye drop bottles was evaluated by transmittance, calculated average roughness (Ra) and haze intensity.

Results: We observed that eye drop bottle which had greater than Ra value of 1.0?µm and haze intensity 62% clearly showed photostability improvement.

Conclusions: This report is the first one which shows that photostability of ophthalmic solution is improved by using textured eye drop bottle. Moreover, this approach is a simple and effective method to improve the photostability. This method is available for not only various ophthalmic applications but also other liquid pharmaceuticals or food products.  相似文献   

11.
Context: Our group previously reported the photoinstability of some desonide topical commercial formulations under direct exposure to UVA radiation.

Objective: This study aimed to prepare and characterize a gel-cream containing desonide, with greater photostability than the commercial gel-cream (C-GC). Benzophenone-3 (BP-3) was used as a photostabilizing agent.

Methods: The gel-cream developed (D-GC) containing BP-3 at 0.1% was prepared and characterized regarding its pH, drug content, spreadability, viscosity, in vitro drug release and in vitro permeation. The in vivo anti-inflammatory effect was assessed by ear edema measurement, croton oil-induced acute skin inflammation and myeloperoxidase assay.

Results and Discussion: D-GC presented characteristics compatible with topical application, appropriate drug content and good spreadability, and non-Newtonian behavior with pseudoplastic flow. D-GC showed a good photostability profile, presenting a desonide content of 95.70% after 48?h of exposure to UVA radiation, and stability under room conditions during 60 days. The amount of desonide released from D-GC and C-GC was 57.8 and 51.7?µg/cm2, respectively, measured using the vertical Franz cell. The in vitro skin permeation showed that desonide reached the site of action of the topical corticosteroids, from both formulations; however, the desonide amount retained in the dermis was lower with D-GC. The in vivo evaluation of topical anti-inflammatory activity indicated that D-GC presented the same biological effect as C-GC.

Conclusion: D-GC represents a promising approach to treat dermatological disorders, since it presented satisfactory physicochemical characteristics, the same biological activity as C-GC and superior photostability, conferred by the addition of BP-3 at 0.1%.  相似文献   

12.
Objective: This study aimed to design and characterize an inhalable dry powder of ciprofloxacin or levofloxacin combined with the mucolytics acetylcysteine and dornase alfa for the management of pulmonary infections in patients with cystic fibrosis.

Methods: Ball milling, homogenization in isopropyl alcohol and spray drying processes were used to prepare dry powders for inhalation. Physico-chemical characteristics of the dry powders were assessed via thermogravimetric analysis, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry and scanning electron microscopy. The particle size distribution, dissolution rate and permeability across Calu-3 cell monolayers were analyzed. The aerodynamic parameters of dry powders were determined using the Andersen cascade impactor (ACI).

Results: After the micronization process, the particle sizes of the raw materials significantly decreased. X-ray and DSC results indicated that although ciprofloxacin showed no changes in its crystal structure, the structure of levofloxacin became amorphous after the micronization process. FT-IR spectra exhibited the characteristic peaks for ciprofloxacin and levofloxacin in all formulations. The dissolution rates of micro-homogenized and spray-dried ciprofloxacin were higher than that of untreated ciprofloxacin. ACI results showed that all formulations had a mass median aerodynamic diameter less than 5?μm; however, levofloxacin microparticles showed higher respirability than ciprofloxacin powders did. The permeability of levofloxacin was higher than those of the ciprofloxacin formulations.

Conclusion: Together, our study showed that these methods could suitably characterize antibiotic and mucolytic-containing dry powder inhalers.  相似文献   

13.
Alumina-zirconia composite powders containing 10, 12.5, 15 or 20 wt% zirconia were prepared by spray-drying the hydroxide gels. These powders were calcined at 650 and 950 °C. The spray-dried as well as the calcined powders were characterized by means of Coulter counter, Sorptometer, infrared spectroscopy (i.r.), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Initially the spray-dried powders are amorphous and spherical in shape with a diameter of 6 m and crystallize after calcination treatment at 950 °C. Sintered density of the 950 °C calcined powder compacts was higher than 650 °C calcined powder compacts. Compacts made from 650 °C treated powders retained 100% tetragonal phase after sintering irrespective of composition. Some amount of tetragonal phase is transformed into monoclinic phase in the composites containing higher amount of zirconia in the sintered compacts made from 950 °C calcined powders.  相似文献   

14.
Objective: The aims of this work are to enhance the in vitro skin permeation of Houttuynia cordata (water-soluble extract of H. cordata; HCWSE) and to boost the efficacy of HCWSE against atopic dermatitis (AD) – like skin lesion in hairless mice using lipid nano-carriers (liposome and cubosome).

Methods: HCWSE was obtained by a hot water extraction. Monoolein cubosomal suspension containing HCWSE and egg phosphatidylcholine liposomal suspension containing the same was prepared by a sonication and a film hydration method, respectively.

Results: The lipid nano-carriers, especially cubosome, enhanced the in vitro skin permeation of HCWSE. The inhibitory effects of HCWSE-containing lipid carrier suspensions on the development of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesion in hairless mice were investigated by observing appearance of skin surface, serum immunoglobulin E (IgE) level and cytokine expression. HCWSE-containing preparations suppressed IgE production and interleukin 4 expression, whereas they promoted interferon gamma expression. The order of lymphocyte (B-cell, Th1 cell and Th2 cell) modulating effect was HCWSE-containing cubosomal suspension?>?HCWSE-containing liposomal suspension?>?HCWSE solution in phosphate buffered saline, indicating that the cubosomal suspension, among the preparations, was the most efficacious in inhibiting the development of DNCB-induced AD-like skin lesion.

Conclusion: It is believed that the cubosomal suspension containing HCWSE would be an efficacious preparation for the treatment of AD.  相似文献   

15.
Objective: Aim of this work was the synthesis of a methacrylic hyaluronic acid (HA) derivative and the production, via photocrosslinking, of related hydrogels loaded with an endopeptidase intended for a potential oral treatment of celiac disease.

Methods: The methacrylic derivative of HA was prepared through a one-pot procedure involving the reaction with ethylenediamine (EDA) and methacrylic anhydride (MA). The obtained derivative, named HA-EDA-MA, was used to prepare photocrosslinked hydrogels loaded with a prolyl endopeptidase derived from Flavobacterium meningosepticum (PEP FM) able to detoxify gliadin. Obtained hydrogels were recovered as gels or freeze-dried powders.

Results: Hydrogels obtained as freeze-dried powders, are able to protect loaded enzyme from degradation due to freeze-drying process and from alteration during storage, overall in the presence of a cryoprotectant. All photocrosslinked HA-EDA-MA hydrogels (gels and powders) release PEP FM in simulated intestinal fluid in sustained manner and in active form. HA-EDA-MA hydrogels are nontoxic as demonstrated through in vitro studies on BALB 3T3 cells.

Conclusions: Prepared hydrogels show a potential application for oral treatment of celiac disease thanks to the possibility to release enzymes able to detoxify the gliadin peptide that induces the immunogenic response.  相似文献   


16.
Abstract

The tablets prepared by the direct compression of spray-dried particles of a drug and zein were evaluated in vitro. The release of drug from the tablets was retarded compared with drug powder alone and tablets prepared from the physical mixtures. Drug release from the tablets was controlled by changing drug content and tablet, weight.  相似文献   

17.
Objective: The objectives of this study were, first, to develop a free-flowing and stable proniosome formulation for poorly water-soluble drugs such as vinpocetine; and second, to estimate its bioavailability as oral drug delivery system.

Methods: The proniosomes consisting of span60, cholesterol, sorbitol and vinpocetine were prepared by a novel approach. After the proniosomes were contacted with water, the suspension of vinpocetine-loaded niosomes formed automatically. The proniosomes and reconstituted niosomes were evaluated for their physicochemical characteristics, in vitro drug dissolution and release, integrity and stability at different GI tract pH conditions, in situ single-pass intestinal perfusion and in vivo bioavailability.

Results: The proniosome powder exhibited excellent flowability. The reconstituted niosomes with high drug entrapment efficiency (89.67?±?3.28%) showed spherical morphology with smooth surface under transmission electron microscope (TEM). X-ray diffraction (XRD) indicated that the drug was in an amorphous or molecular state in proniosome powder. In vitro dissolution and release study, proniosomes did enhance the dissolution and release rate compared to vinpocetine suspension in phosphate buffer solution (pH 7.2). Proniosome-derived niosomes could keep their integrity and stability at different GI tract pH conditions. The in situ single-pass intestinal perfusion indicated that encapsulation of vinpocetine into niosomes could largely improved the absorption of vinpocetine. The AUC(0?∞) of F2 and F3 was about 4.0- and 4.9-fold higher than that of the vinpocetine suspension, respectively. The results demonstrated the proniosomes indeed remarkably enhanced the oral bioavailability of vinpocetine.

Conclusion: This study suggested the potential of proniosomes as stable precursors for the immediate preparation of niosome carrier systems.  相似文献   

18.
Alendronate sodium is a bisphosphonate drug used for the treatment of osteoporosis and acts as a specific inhibitor of osteoclast-mediated bone resorption. Inhalable solid lipid nanoparticles (SLNs) of the alendronate were successfully designed and developed by spray-dried and co-spray dried inhalable mannitol from aqueous solution. Emulsification technique using a simple homogenization method was used for preparation of SLNs. In vitro deposition of the aerosolized drug was studied using a Next Generation Impactor at 60?L/min following the methodology described in the European and United States Pharmacopeias. The Carr’s Index, Hausner ratio and angle of repose were calculated as suitable criteria for estimation of the flow behavior of solids. Scanning electron microscopy showed spherical particle morphology of the respirable particles. The proposed spray-dried nanoparticulate-on-microparticles dry powders displayed good aerosol dispersion performance as dry powder inhalers with high values in emitted dose, fine particle fraction and mass median aerodynamic diameter. These results indicate that this novel inhalable spray-dried nanoparticulate-on-microparticles aerosol platform has great potential in systemic delivery of the drug.  相似文献   

19.
Background: An automated version of uniaxial powder flow testing has recently been developed and there is a need for experimental data from pharmaceutical powders.

Purpose: To compare the novel testing method with an annular shear cell using different pharmaceutical excipients. A particular aim was to gain an improved understanding of potential differences in the obtained flow results.

Methods: Nine excipients were studied with both flow testers at different consolidation levels. Unconfined yield strengths were determined at similar major consolidation stresses. Finally, an anisotropic stress factor was calculated and the fractal character of the powders was assessed by means of image analysis in a rotating drum.

Results: Data correlated generally well; however, the unconfined yield strength from uniaxial testing resulted mostly in lower values compared to annular shear cell testing. Differences were specific for the given excipients and mannitol demonstrated the highest discrepancy of measured flow parameters. The differences were first discussed by considering wall friction, anisotropy of forces, brittleness as well as the fractal nature of the powder surface. This heterogeneity of the powder as well as the anisotropy of forces was also found to be important for the relative flow index.

Conclusions: The automated uniaxial method demonstrated faster and more reproducible flow testing as compared to an annular shear cell. Therefore, the new method has a high potential in pharmaceutics for example in the quality-control of powders.  相似文献   

20.
ABSTRACT

Green ceramic fibers from Al2O3, Si3N4, Ce-ZrO2, SiC, and other ceramics can be prepared by dry spinning of powder-loaded suspensions. The green fibers contain 54 to 64 vol. % ceramic powder in an ethyl methacrylate polymer base. Continuous fibers with an average diameter of 60 to 175 µm were spun at rates of 10 to 40 meters/minute. Spinnable dope compositions are defined for simple ternary powder + polymer + solvent systems, and are compared for several powders in MEK-based solvents. Spinnability is related to extrusion pressure, and drying conditions, and the shear rheological behavior of the dope. Fiber preparation by suspension dry spinning is compared with melt spinning of powder-loaded thermoplastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号