首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Context: Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature. Objective: To investigate the effect of polymer concentration, pH, ions and temperature on the gel formation of β-glucan, a natural cell-wall polysaccharide derived from barley, with particular emphasis on two-phase system formation after addition of dextran or PEG. Materials and methods: Oscillation viscometry was used to evaluate the gel character by measuring flow index (N), storage (G') and loss (G″) moduli. Two-phase systems were further characterized for hardness and syringeability using a texture analyzer. Finally, in vitro release characteristics were determined using Franz diffusion cells. Results: Oscillation viscometry revealed that only addition of dextran or PEG resulted in distinct gel formation. This was seen by a decrease in N after polymer addition. Moreover, hardness (in g) of the gels increased significantly (p?相似文献   

2.
Background: Incorporation of proteins/peptide drugs into nanoparticulate drug delivery system is one of the effective approaches to increase the stability of protein/peptide drugs against enzymatic degradation, to release them in a controlled fashion and to achieve site-specific drug delivery.

Objective: Our goal was to design and evaluate poly-?-caprolactone (PCL) nanoparticles using bovine serum albumin (BSA) as a model protein. d-α-tocopheryl polyethylene glycol 1000 (vitamin E TPGS) was used as an emulsifier in the fabrication of these nanoparticles.

Methods: Double emulsion solvent evaporation method was employed to formulate BSA-loaded PCL nanoparticles and the nanoparticles thus prepared were further characterized.

Results: The size of BSA-loaded PCL nanoparticles were in the range of 400–500?nm with a polydispersity index (PDI) of 0.195 and zeta potential was about ?28.6 mV. Scanning electron microscopy (SEM) confirmed the presence of smooth and spherical surface of nanoparticles. Encapsulation efficiency was about 85% and a yield of 70–75% was attained. BSA was released in a biphasic pattern with an initial 20% release within 2?h followed by a slower release patter over 5 days. Flow cytometry and fluorescence microscopy was used to study the uptake of these nanoparticles. Circular dichroism (CD) results showed that there was no significant effect of formulation conditions on the secondary structure of BSA.

Conclusion: Based on the results obtained, these TPGS-emulsified PCL nanoparticles proved to be potential carriers for the delivery of protein/peptide drugs.  相似文献   

3.
β-Hairpin peptide-based hydrogels are a class of injectable hydrogel solids with significant potential use in injectable therapies. β-hairpin peptide hydrogels can be injected as preformed solids, because the solid gel can shear-thin and consequently flow under a proper shear stress but immediately recover back into a solid on removal of the stress. In this work, hydrogel behavior during and after flow was studied in order to facilitate fundamental understanding of how the gels flow during shear-thinning and how they quickly recover mechanically and morphologically relative to their original, pre-flow properties. While all studied β-hairpin hydrogels shear-thin and recover, the duration of shear and the strain rate affected both the gel stiffness immediately recovered after flow and the ultimate stiffness obtained after complete rehealing of the gel. Results of structural analysis during flow were related to bulk rheological behavior and indicated gel network fracture into large (>200 nm) hydrogel domains during flow. After cessation of flow the large hydrogel domains are immediately percolated which immediately reforms the solid hydrogel. The underlying mechanisms of the gel shear-thinning and healing processes are discussed relative to other shear-responsive networks like colloidal gels and micellar solutions.  相似文献   

4.
Albendazole (ABZ), mebendazole (MBZ), and ricobendazole (RBZ) are low-soluble anthelmintic benzimidazole carbamate drugs. To increase their aqueous solubility, three different types of β-cyclodextrins (CyDs): β-cyclodextrin (CD), hydroxypropyl-β-cyclodextrin (HPCD), and methyl-β-cyclodextrin (MCD) were used. Solubility depended on the type of CyDs. Increased solubility was obtained when the more substituted CyDs (HPCD or MCD) were used instead of nonsubstituted CD. Stability constants were calculated assuming a 1:1 stoichiometry. Calculated stability constant values depended on initial solubility of drug and pH of the medium. Solid ABZ complexes were prepared by coprecipitation and freeze-drying methods. These products were compared with physical mixtures of ABZ and CyDs. The characterization of these products was made by differential scanning calorimetry (DSC) and drug release studies. True inclusion complexes were obtained only by the freeze-drying method. Drug release studies showed that the freeze-dried inclusion complexes increased the solubility rate of ABZ, although a supersaturation effect was observed when drug release studies were performed in nonsink conditions. A bioavailability study on mice was done with a formulation of ABZ : HPCD complex and was compared to a conventional ABZ suspension. A significantly (p <. 05) shorter Tmax of absorption was obtained by using the complex formulation. Greater and significant (p <. 05) differences for AUC and Cmax were observed.  相似文献   

5.
Objective: The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability.

Methods: The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7?mg/kg) in male Wistar rats.

Results: The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20?nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution.

Conclusion: These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.  相似文献   

6.
Objective: This study was aimed to enhance aqueous solubility of dexibuprofen through designing β-cyclodextrin (βCD) hydrogel nanoparticles and to evaluate toxicological potential through acute toxicity studies in rats.

Significance: Dexibuprofen is a non-steroidal analgesic and anti-inflammatory drug that is one of safest over the counter medications. However, its clinical effectiveness is hampered due to poor aqueous solubility.

Methods: βCD hydrogel nanoparticles were prepared and characterized by percent yield, drug loading, solubilization efficiency, FTIR, XRD, DSC, FESEM and in-vitro dissolution studies. Acute oral toxicity study was conducted to assess safety of oral administration of prepared βCD hydrogel nanoparticles.

Results: βCD hydrogel nanoparticles dramatically enhanced the drug loading and solubilization efficiency of dexibuprofen in aqueous media. FTIR, TGA and DSC studies confirmed the formation of new and a stable nano-polymeric network and interactions of dexibuprofen with these nanoparticles. Resulting nanoparticles were highly porous with 287?nm in size. XRD analysis revealed pronounced reduction in crystalline nature of dexibuprofen within nanoparticles. Release of dexibuprofen in βCD hydrogel nanoparticles was significantly higher compared with dexibuprofen tablet at pH 1.2 and 6.8. In acute toxicity studies, no significant changes in behavioral, physiological, biochemical or histopathologic parameters of animals were observed.

Conclusions: The efficient preparation, high solubility, excellent physicochemical characteristics, improved dissolution and non-toxic βCD hydrogel nanoparticles may be a promising approach for oral delivery of lipophilic drugs.  相似文献   

7.
Lopinavir (LPV)-loaded poly-ε-caprolactone (PCL) nanoparticles (NPs) were prepared by emulsion solvent evaporation technique. Effects of various critical factors in preparation of loaded NPs were investigated. Box–Behnken design (BBD) was employed to optimize particle size and entrapment efficiency (EE) of loaded NPs. Optimized LPV NPs exhibited nanometeric size (195.3?nm) with high EE (93.9%). In vitro drug release study showed bi-phasic sustained release behavior of LPV from NPs. Pharmacokinetic study results in male Wistar rats indicated an increase in oral bioavailability of LPV by 4-folds after incorporation into PCL NPs. From tissue distribution studies, significant accumulation of loaded NPs in tissues like liver and spleen indicated possible involvement of lymphatic route in absorption of NPs. Mechanistic studies using rat everted gut sac model revealed endocytosis as a principal mechanism of NPs uptake. In vitro rat microsomal metabolism studies demonstrated noticeable advantage of LPV NPs by affording metabolic protection to LPV. These studies indicate usefulness of PCL NPs in enhancing oral bioavailability and improving pharmacokinetic profile of LPV.  相似文献   

8.
Objective: The aim of this study was the preparation of a self nano-emulsifying drug delivery system (SNEDDS) for oral delivery of heparin.

Significance: Preparation of hydrophobic complexes between heparin as the hydrophilic macromolecule and cationic polymer of β-cyclodextrin (CPβCD) was considered for preparation of orally administered SNEDDS in which the drug incorporated in internal oil phase of O/W nano-droplets.

Methods: Hydrophobic complexes of heparin-CPβCD were prepared by electrostatic interaction. The lipophilic feature of complexes was characterized by determining their partition co-efficients. SNEDDS prototypes were prepared by mixing liquid paraffin, Tween 80, propylene glycol and ethanol, diluted 1:100 in an aqueous medium. Central composite response surface methodology was applied for statistical optimization. Independent variables were the amount of liquid paraffin and the amount of Tween 80, while responses were size and poly dispersity index (PdI). Optimized SNEDDS were studied morphologically using transmission electron microscopy (TEM). In vitro release of heparin was studied in the simulated gastric and simulated intestinal media.

Results: The data revealed that in molar ratio 1:3 (heparin:CPβCD), the n-octanol recovery was maximized and reached 67.6?±?11.86%. Size, PdI, zeta potential, EE% in gastric medium and EE% in intestinal medium for optimized nano-droplets were reported as 307?±?30.51?nm, 0.236?±?0.02,?+2.1?±?0.66?mV, 90.2?±?0.04 and 96.1?±?0.73%, respectively. Microscopic images revealed spherical nano-droplets. The obtained data revealed no burst release of heparin from nano-droplets.

Conclusions: The obtained results indicate that SNEDDS could be regarded as a good candidate for oral delivery of heparin as the hydrophilic macromolecule.  相似文献   

9.
The detection efficiency and position resolution of a microchannel plate chevron for electron beams of 12 to 300 keV energy at 0° to 45° angles of incidence have been investigated. The chevron is shown to ensure good stability, high detection efficiency and high position resolution in the energy range under study.  相似文献   

10.
The objective of this paper is to study the vibration characteristic for a sandwich beam with silica/polymer blend as principal material, and pure polymer matrix as surface laminate. It is anticipated that high stiffness and structure damping of viscoelastic layer can be obtained by taking advantage of fascinating network of densely packed between silica and polymer matrix. Spherical particles of size 12–235 nm at various filler fraction (10–50 wt.%) and three different polymer matrices, polyacrylate, polyimide and polypropylene, were selected as the matrix materials. The mechanical damping and stiffness of the sandwich cantilever beam are recorded by using a Dynamic Mechanical Thermal Analyzer (DMTA). The silica’s small particle size feature and strain difference between principal and surface layers could highly enhance the energy dissipation ability of the beam structure. A numerical model is then developed and validated for the vibration of a symmetric elastic–viscoelastic sandwich beam. Experimental results show that the structure deformation for these sandwich beams with contiguous and constraining layers are in reasonable agreement with the prediction of the model. Both higher resonant vibrations are well damped in accordance with the symmetric motion of the elastic layers and relative little motion of the constraining layer.  相似文献   

11.
With the use of a recently created chitosan neutral hydrogel, we have been able to create various mixtures of chitin and chitosan without changing their characteristics even at room temperature. The aim of this study was the initial comparison of various mixtures of β-chitin and chitosan as a scaffold for rabbit chondrocyte culture. We created five types of sponges: pure β-chitin, pure chitosan, 3:1, 1:1, and 1:3 β-chitin-chitosan. The absorption efficiencies of chondrocytes in all five types of sponges were found to be around 98%. The mean concentrations of chondroitin sulfate were statistically different neither at week 2 nor at week 4 postculture between the types of sponges. The content of hydroxyproline in the β-chitin sponge was significantly greater than in other sponges at week 4 postculture. From the histochemical and immunohistochemical findings, the cartilage-like layer in the chondrocytes-sponge composites of all five types of sponges was similar to hyaline cartilage. However, only immunohistochemical staining of type II collagen in the pure β-chitin sponge was closer to normal rabbit cartilage than other types of sponges. The pure β-chitin sponge was superior to other sponges concerning the content of extracellular matrices of collagen.  相似文献   

12.
In the present study, we prepared an inclusion complex of methotrexate (MTX) with β-cyclodextrin (β-CD) in order to decrease its photosensitivity and enhance its aqueous solubility. Then we incorporated this inclusion complex in a self-microemulsifying drug delivery system (SMEDDS) overall to increase its oral bioavailability. The inclusion complex has been prepared by freeze drying method and characterized by differential scanning calorimetry (DSC), ultraviolet (UV), and infrared (IR) spectroscopy assays. The proper molecular ratio of MTX/β-CD was found to be of 1:7, and the water-solubility of MTX was increased in an average of 10-fold. The photostability studies showed that the MTX became stable on exposure to light. Construction of pseudoternary diagrams were investigated to prepare a MTX/β-CD inclusion complex loaded SMEDDS which was characterized by measuring the particle size and the zeta-potential. The optimum formulation of SMEDDS was a system consisting of ethyl oleate, tween 80, and propylene glycol with a mean droplet size of 39.42?nm. In vitro drug release in different pH media showed that the release profile of MTX from the MTX/β-CD loaded SMEDDS was influenced by the pH of the release medium and presented the characteristics of a sustained release profile. Finally, in-vivo studies showed an enhancement of the bioavailability of MTX from the MTX/β-CD loaded SMEDDS form of 1.57-fold. We concluded that the β-CD inclusion complex loaded SMEDDS improved the chemical and physiological properties of MTX and could be a promising means for the delivery of MTX and other unstable and lipophilic drugs by oral route.  相似文献   

13.
The aim was to prepare an optimized zolmitriptan (ZT)-loaded transfersome formulation using Box–Behnken design for improving the bioavailability by nasal route for quick relief of migraine and further to compare with a marketed nasal spray. Here, three factors were evaluated at three levels. Independent variables include: amount of soya lecithin (X1), amount of drug (X2) and amount of tween 80 (X3). The dependent responses were vesicle size (Y1), flexibility index (Y2) and regression coefficient of drug release kinetics (Y3). Prepared formulations were evaluated for physical characters and an optimal system was identified. Further, in vivo pharmacokinetic study was performed in male wistar rats to compare the amount of drug in systemic circulation after intranasal administration. Optimized ZT-transfersome formulation containing 82.74?mg of lecithin (X1), 98.37?mg of zolmitriptan (X2) and 32.2?mg of Tween 80 (X3) and had vesicle size of 93.3?nm, flexibility index of 20.25 and drug release regression coefficient of 0.992. SEM picture analysis revealed that the vesicles were spherical in morphology and had a size more than 1?µm. The formulations were found to be physically stable upon storage at room temperature up to 2?months period, as there were no significant changes noticed in size and ZP. The nasal bioavailability of optimized transfersome formulation was found to be increased by 1.72 times than that of marketed nasal spray (Zolmist®). The design and development of zolmitriptan as transfersome provided improved nasal delivery over a conventional nasal spray for a better therapeutic effect.  相似文献   

14.
Nanocomposites consisting of hydroxyapatite (HA) and a sodium maleate copolymer (maleic polyelectrolyte), synthesized by hydrothermal method and deposited on titanium substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique were tested for the biological properties. Coating bioanalysis was carried out by triple staining of actin, microtubules and nuclei followed by immunofluorescence microscopy. Within 24 h cells that occupied the biomaterial surface displayed the morphology and cytoskeleton pattern similar to the controls. Cells grown on nanocomposite coated surfaces had a higher proliferation rate than their counterparts grown on Ti coated with HA alone, indicating that maleic polyelectrolyte improved surface bio-adhesive characteristics. The capacity to induce cell attachment, spreading and proliferation demonstrated the potential of Ti coated with HA-polymer nanocomposites to be used as scaffolds in dental or orthopedic implantology.  相似文献   

15.
16.
The disadvantage of current biodegradable metals such as Mg and Fe is the release of hydrogen gas in vivo that can cause gas embolism and the production of voluminous iron oxide that can cause inflammation, respectively. Such considerations have turned focus towards Zn as an alternative. This is based on the fact that Zn plays a crucial role in many physiological processes, as well as potentially being biocompatible and capable of with biodegradation. As such, the purpose of the present study was to evaluate the in vivo performance of pure Zinc and Zn–2%Fe implants. The use of iron as an alloying element was aimed at accelerating the corrosion rate of pure zinc by a micro-galvanic effect so as to maintain the post-implantation biodegradation characteristics of the implant. In vivo assessment was carried out using cylindrical disks implanted in the back midline of 16 male Wistar rats for up to 24 weeks. Post-implantation evaluation included monitoring the well-being of rats, weekly examination of hematological parameters: serum Zn levels, red and white blood cell counts and hemoglobin levels, X-ray radiography, histological analysis and corrosion rate assessment. The results obtained in terms of well-being, hematological tests and histological analysis of the rats indicate that the in vivo behavior of pure Zn and Zn–2%Fe implants was adequate and in line with the results obtained by the control group containing inert Ti–6Al–4V alloy implants. The corrosion rate of Zn–2%Fe alloy in in vivo conditions was relatively increased compared to pure Zn due to micro-galvanic corrosion.  相似文献   

17.
The effect of seeding on microstructural development and fracture toughness of -SiC with an oxynitride glass was investigated by the use of morphologically rodlike -SiC whiskers. A self reinforced microstructure consisting of rodlike -SiC grains and equiaxed -SiC matrix grains was obtained by seeding 1–10 wt% SiC whiskers, owing to the epitaxial growth of -SiC from the seed whiskers. Further addition of seeds (20 wt%) or further annealing at higher temperatures led to a unimodal microstructure, owing to the impingement of growing seed grains. By seeding -SiC whiskers, fracture toughness of fine-grained materials was improved from 2.8 to 3.9–6.7 MPa · m1/2, depending on the seed content.  相似文献   

18.
The corrosion and electrochemical behavior of a low stiffness β -Ti-45wt.%Nb (Ti45Nb) was studied in solutions that resemble body environment, as compared to Ti6Al4V and Ti-55wt.%Ni (Ti55Ni, Nitinol) alloys currently used in surgical implants. In Ringers' solution, Ti45Nb alloy exhibited an excellent corrosion resistance, comparable to that of Ti6Al4V and much better than that of Nitinol. In acidic environments, β -Ti45Nb remained passive under conditions where active dissolution was observed for both Ti6Al4V and Nitinol alloys. The results warrant further corrosion and biocompatibility studies of β -Ti45Nb alloy to establish its suitability as implant material.  相似文献   

19.
A mesoporous hydroxyapatite (HA) coating was prepared on a β-tricalcium phosphate (β-TCP) porous scaffold by a sol-gel dip-coating method using the block copolymer Pluronic F127 (EO106PO70EO106) as the template. For application as a bone graft, in vitro cell response and bone-related protein expression of mesoporous HA coated β-TCP scaffold were investigated, using the non-mesoporous HA coated scaffold as the control group, to evaluate the influence of the mesoporous structure on the biological properties of HA coating. It was found that the increased surface area of the mesoporous HA coating greatly affected the response of MC3T3-E1 osteoblasts and the expression of proteins. An enzyme-linked immunosorbent assay recorded a significantly higher expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP) in the mesoporous group than those in the control group (*p < 0.05) after different incubation periods. The introduction of mesopores enhanced the expression of ALP and BSP in the cells grown on the mesoporous HA coatings, on the premise of maintaining the protein expression in a sequence to ensure the correct temporo-spatial expression in osteogenesis. These results indicated that the mesoporous HA coating would provide a good environment for cell growth, suggesting that it could be used as the coating material for the surface modification of the tissue engineering scaffolds.  相似文献   

20.
There is strong evidence that the amyloid-β peptide (Aβ) plays a crucial role in the pathogenesis of Alzheimer's disease (AD), a lethal neurodegenerative disorder of the elderly. During pathology development, the peptide as well as its various chemically modified isoforms is accumulated in specific brain tissues as characteristic proteinaceous deposits, the so-called amyloid plaques, which are the pathomorphological mark of AD, although the level of Αβ in the blood is the same for healthy individuals and for AD patients. Earlier, it has been shown that isomerization of aspartate 7, the most abundant post-translational modification of the Αβ peptide, is tightly involved in a set of molecular processes associated with AD progression. Therefore, the isoAsp 7-containing Αβ isomer (isoAβ) is assumed to be a potential biomarker of AD that can be identified in the blood. Here, we present an analytical mass spectrometric method for quantitative determination of the ratio of normal and isomerized Αβ fragments 1-16 in their binary mixtures, and all analytical capabilities, such as accuracy, detection limits, and sensitivity of the presented method, are determined and thoroughly discussed. On the basis of this method, an analytical approach for quantitative determination of this modification in the blood will be developed in further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号