首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: The objective of this study is to investigate the wet-milled-drug layering process which could significantly improve the dissolution rate and oral bioavailability of fenofibrate pellets. Methods: Fenofibrate was milled with HPMC-E5 to prepare a uniform suspension in the micrometer and nanometer range, and this suspension was then layered on to sugar spheres to form the pellets (F1, F2). Results: The particle size was significantly reduced (from 1000 μm to 1-10 μm and 400?nm) but the fenofibrate in suspension retained its crystallinity from the results of DSC and PXRD investigations. The dissolution rate of F1-F2 and Antara? capsules was 55.47 %, 61.27 % and 58.43 %, respectively, in 0.01?mol/L SDS solution over 60?min. In addition, F1, F2, and Antara? capsules were given orally to 6 beagle dogs to determine the bioavailability. The C(max) of F1, F2 (8.21?±?2.55 and 9.33?±?2.37 μg/mL)and the AUC((0-t)) of F1, F2 (152.46?±?78.89 and 172.17?±?67.58 μg/mL·h)were higher than those of Antara? (6.02?±?3.34 μg/mL and 89.82?±?46.46 μg/mL·h) and, F1, F2 reached their C(max) earlier than Antara? (F1: 2.0?±?1.1?h; F2: 1.8?±?1.2?h; Antara?: 6.0?±?8.9?h). Conclusion: These results show that the wet-milled-drug layering technique is a powerful method to improve the dissolution rate and the bioavailability of fenofibrate.  相似文献   

2.
Objective: The purpose of this study was to investigate the dissolution and oral bioavailability of an immediate-release tablet involving wet grinding of a poorly water-soluble drug, fenofibrate. Methods: The milled suspension was prepared using a Basket Dispersing Mill in the presence of a hydrophilic polymer solution and then granulated with common excipients, and compressed into an immediate-release tablet with blank microcrystalline cellulose granules. Results: Compared with unmilled tablets (56% within 30 minutes), the dissolution of wet-milled tablets (about 98% in 30 minutes) was markedly enhanced. No significant decrease in the dissolution rate (96% in 30 minutes) of the wet-milled tablet was observed after 3 months under 40°C and 75% relative humidity storage. In addition, the oral bioavailability of the wet-milled tablets (test) and Lipanthyl® supra-bioavailability tablets (reference) was determined in beagle dogs after a single dose (160 mg fenofibrate) in a randomized crossover, own-control study. The results suggested that both the area under the plasma concentration–time curve (AUC(0?t) = 46.83 ± 11.09 μg/mL h) and the mean peak concentration of the test (Cmax = 4.63 ± 1.71 μg/mL) were higher than the reference (AUC(0?t) = 35.12 ± 10.97 μg/mL h, Cmax = 2.11 ± 0.08 μg/mL). The relative bioavailability of the wet-milled tablet was approximately 1.3-fold higher. Furthermore, the apparent rate of absorption of fenofibrate from the wet-milled tablet (Tmax = 2.63 hours) was faster than that from Lipanthyl® (Tmax = 3.75 hours). Conclusion: These results indicated that the dissolution and the bioavailability of fenofibrate were significantly enhanced by wet-grinding process. So, this shows that wet grinding is a powerful technique to improve the bioavailability for poorly water-soluble drugs, especially for Biopharmaceutics Classification System Class II compounds.  相似文献   

3.
Naringin (NA) is one of typical flavanone glycosides widely distributed in nature and possesses several biological activities including antioxidant, anti-inflammatory, and antiapoptotic. The aim of this study was to develop solid dispersion (SD) and to improve the dissolution rate and oral bioavailability of NA. NA–SD was prepared by the traditional preparation methods using PEG6000, F68, or PVP K30 as carrier at different drug to carrier ratios. According to the results of solubility and in vitro dissolution test, the NA–PEG6000 (1:3) SD was considered as an optimal formulation to characterize by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and powder X-ray diffraction. Furthermore, oral bioavailabilities of NA–PEG6000 (1:3) SD and NA–suspension with the same dosage were investigated in SD rats. The results confirmed the formation of SD and the pharmacokinetic parameters of NA–PEG6000 (1:3) SD (Cmax?=?0.645?±?0.262?µg/ml, AUC0–t?=?0.471?±?0.084?µg/ml?h) were higher than that of NA–suspension (Cmax?=?0.328?±?0.183?µg/ml, AUC0–t =?0.361?±?0.093?µg/ml?h). Based on the results, the SD is considered as a promising approach to enhance the dissolution rate and oral bioavailability of NA.  相似文献   

4.
Erectile dysfunction (ED) is the most important disorder after premature ejaculation for sexual activity in men. Vardenafil hydrochloride (VH) is an oral therapy for the treatment of erectile dysfunction. VH oral disintegrating tablets (ODTs) have been prepared by freeze drying technique to improve its dissolution profile and the overall clinical performance. Dapoxetine hydrochloride (DH) was added to the best three formulae of the prepared VH ODTs to treat premature ejaculation. All the ODTs formulae were evaluated for weight variation, friability, drug content, in vitro disintegration time, wetting time, and the dissolution study. Gelatin as a matrix former with N-methylpyrrolidone as a solubilizer in VH/DH ODTs improved the dissolution rate and extent of release of VH and DH with 100% of drug being dissolved after 15?min. In vivo study results from six healthy male volunteers showed shorter Tmax of VH from VH/DH ODT of 0.583?±?0.129?h and shorter Tmax of DH from VH/DH ODT of 0.625?±?0.137?h and showed AUC0–12 of VH from VH/DH ODT of 39.234?±?10.932?ng/ml?h1 and AUC0–12 of DH from VH/DH ODT of 531.681?±?129.544?ng/ml?h1, with relative bioavailability values of 100.9 and 85%, respectively, compared to (Levitra®) and (Priligy®).  相似文献   

5.
Context: Development of solid dispersions is to improve the therapeutic efficacy by increasing the drug solubility, dissolution rate, bioavailability as well as to attain rapid onset of action.

Objective: The present research deals with the development of solid dispersions of flurbiprofen which is poorly water soluble to improve the solubility and dissolution rate using gelucires.

Materials and methods: In this study, solid dispersions were prepared following solvent evaporation method using gelucire 44/14 and gelucire 50/13 as carriers in different ratios. Then the formulations were evaluated for different physical parameters, solubility studies, DSC, FTIR studies and in vitro dissolution studies to select the best formulation that shows rapid dissolution rate and finally subjected to pharmacokinetic studies.

Results and discussion: From the in vitro dissolution study, formulation F3 showed the better improvement in solubility and dissolution rate. From the pharmacokinetic evaluation, the control tablets produced peak plasma concentration (Cmax) of 9140.84?±?614.36?ng/ml at 3?h Tmax and solid dispersion tablets showed Cmax?=?11?445.46?±?149.23?ng/ml at 2?h Tmax. The area under the curve for the control and solid dispersion tablets was 31?495.16?±?619.92 and 43?126.52?±?688.89?ng h/ml and the mean resident time was 3.99 and 3.68?h, respectively.

Conclusion: From the above results, it is concluded that the formulation of gelucire 44/14 solid dispersions is able to improve the solubility, dissolution rate as well as the absorption rate of flurbiprofen than pure form of drug.  相似文献   

6.
The aim of this study was to develop Cyclosporin A (CsA) sustained-release pellets which could maintain CsA blood concentration within the therapeutic window throughout dosing interval and to investigate the in vitro–in vivo correlation (IVIVC) in beagle dogs. The CsA sustained-release pellets (CsA pellets) were prepared by a double coating method and characterized in vitro as well as in vivo. Consequently, the CsA pellets obtained were spherical in shape, with a desirable drug loading (7.18?±?0.17?g/100?g), good stability and showed a sustained-release effect. The Cmax, Tmax and AUC0–24 of CsA pellets from the in vivo pharmacokinetics evaluation was 268.22?±?15.99?ng/ml, 6?±?0?h and 3205.00?±?149.55?ng·h/ml, respectively. Compared with Neoral®, CsA pellets significantly prolonged the duration of action, reduced the peak blood concentration and could maintain a relatively high concentration level till 24?h. The relative bioavailability of CsA pellets was 125.68?±?5.37% that of Neoral®. Moreover, there was a good correlation between the in vitro dissolution and in vivo absorption of the pellets. In conclusion, CsA pellets which could ensure a constant systemic blood concentration within the therapeutic window for 24?h were prepared successfully. Meanwhile, this formulation possessed a good IVIVC.  相似文献   

7.
Attempting to prepare a convenient bioavailable formulation of vitamin B12 (cyanocobalamin), 17 tablet formulations were prepared by direct compression. Different concentrations of hydroxypropyl methyl cellulose (HPMC), carbopol 971p (CP971p), and chitosan (Cs) were used. The tablets were characterized for thickness, weight, drug content, hardness, friability, surface pH, in vitro drug release, and mucoadhesion. Kinetic analysis of the release data was conducted. Vitamin B12 bioavailability from the optimized formulations was studied on rabbits by the aid of enzyme-linked immunosorbent assay. Neurotone® I.M. injection was used for comparison. HPMC (F1-F4), CP971p (F5-F8), and HPMC/CP971p (F12-F15)-based formulations showed acceptable mechanical properties. The formulated tablets showed maximum swelling indices of 232?±?0.13. The surface pH values ranged from 5.3?±?0.03 to 6.6?±?0.02. Bioadhesive force ranged from 66?±?0.6 to 150?±?0.5?mN. Results showed that CP971p-based tablets had superior in vitro drug release, mechanical, and mucoadhesive properties. In vitro release date of selected formulations were fitted well to Peppas model. HPMC/CP971p-based formulations showed bioavailability up to 2.7-folds that of Neurotone® I.M. injection.  相似文献   

8.
The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7?±?12.9 to 423?±?15.9?nm while zeta potential values varied from ?21.7?±?0.90 to ?22.7?±?0.85?mV. The loading capacity varied from 17.9?±?1.21 to 34.1?±?1.16%. DSC, FT–IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p?in vivo performance of AC.  相似文献   

9.
Codeine is an important opioid anti-tussive agent whose short half-life (2.9?±?0.7?h) requires that it be administered at 4-h intervals when formulated as a simple aqueous solution. Liquid controlled release codeine formulations such as an older Codipertussin® formulation, which contained codeine bound to an ion exchange resin and coated with a retardant polymer, achieved an equivalent bioavailability when administered every 12?h. An accompanying paper described the development and in vitro characterization of a novel Codipertussin® formulation containing a non-coated codeine:ion exchange resin (Amberlite IR 69 F) complex. In this study, the bioavailability of codeine from this new liquid controlled release formulation was investigated in an open label, single center, randomized, steady-state, cross-over study in healthy male volunteers. Participants received either 69.7?mg codeine as the controlled release liquid form every 12?h or 23.2?mg codeine in solution every 4?h. Controlled release from the suspension of beads protracted the apparent mean half life of codeine from 3.2?h to 8.2?h, while the mean AUC0–12 h was unchanged. In vivo codeine release profiles were further derived by the numerical deconvolution method, using the data from the drug solution as weighting function for the body system. Comparison of the data obtained with the in vitro release data presented in our earlier work showed an acceptable in vitro–in vivo correlation, which was described as in vitro–in vivo relationship, indicating the power of the in vitro method to predict in vivo pharmacokinetic behavior.  相似文献   

10.
In this study, furbiprofen/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes were prepared to improve the drug dissolution and facilitate its application in hydrophilic gels. Inclusion complexes were prepared using a supercritical fluid processing and a conventional optimized co-lypholization method was employed as a reference. The entrapment efficacy and drug loading of both methods were investigated. Evaluation of drug dissolution enhancement was conducted in deionized water as well as buffer solutions of different pH. Carbopol 940 gels of both flurbiprofen and flurbiprofen/HPβCD inclusion complexes, with or without penetration enhancers, were prepared and percutaneous permeation studies were performed using rat abdominal skin samples. Formation of flurbiprofen/HPβCD inclusion complexes was confirmed by Fourier transform-infrared spectroscopy, differential scanning calorimetry, X-ray diffraction and scanning electron microscopy. The results obtained showed that SCF processing produced a higher EE (81.91?±?1.54%) and DL (6.96?±?0.17%) compared with OCL with values of 69.11?±?2.23% and 4.00?±?1.01%, respectively. A marked instantaneous release of flurbiprofen/HPβCD inclusion complexes prepared by SCF processing (103.04?±?2.66% cumulative release within 5?min, a 10-fold increase in comparison with flurbiprofen alone) was observed. In addition, this improvement in dissolution was shown to be pH-independent (the percentage cumulative release at pH 1.2, 4.5, 6.8 and 7.4 at 5?min was 95.19?±?1.71, 101.75?±?1.44, 105.37?±?4.58 and 96.84?±?0.56, respectively). Percutaneous permeability of flurbiprofen-in-HPβCD-in-gels could be significantly accelerated by turpentine oil and was related to the water content in the system. An in vivo pharmacokinetic study showed a 2-fold increase in Cmax and a shortened Tmax as well as a comparable relative bioavailability when compared with the commercial flurbiprofen Cataplasms (Zepolas®). With their superior dissolution, these flurbiprofen/HPβCD inclusion complexes prepared by SCF processing could provide improved applications for flurbiprofen.  相似文献   

11.
The poor bioavailability and therapeutic response exhibited by conventional ophthalmic solutions due to rapid precorneal elimination of the drug may be overcome by the use of gel system. The present work was conducted to evaluate the relative bioavailability of ion-activated in situ ophthalmic gel of gatifloxacin by microdialysis. The conventional ophthalmic solution of gatifloxacin was used as reference. The AUC of test group is 3.8-fold vs. the reference group (1.4316 ± 0.1327 μg·mL?1·h vs. 0.3756 ± 0.0380 μg·mL?1·hr) (P < 0.05), and the Cmax of test group vs. the control group is 3.0-fold (0.3363 ± 0.0634 μg·mL?1 vs. 0.1112 ± 0.0151 μg·mL?1) (P < 0.05). The Tmax of test group is longer than that of reference group (2.0 ± 0.67 hr vs. 0.667 ± 0.17 hr) (P < 0.1), and Ke of test group is lower than that of reference group. The developed formulation has a higher bioavailability and longer residence time in aqueous humor than conventional ophthalmic solutions. The developed system is a viable alternative to conventional eye drops.  相似文献   

12.
Akebia saponin D (ASD) exhibits a variety of pharmacological activities, such as anti-osteoporosis, neuroprotection, hepatoprotection, but has poor oral bioavailability. A self-nanoemulsifying drug delivery system loaded with akebia saponin D - phospholipid complex (APC-SNEDDS) (composition: Peceol: Cremophor® EL: Transcutol HP: ASD: phospholipid; ratio: 10:45:45:51:12.3, w:w:w:w:w) was first developed to improve the oral absorption of saponins and it was found to significantly enhance ASD’s oral bioavailability by 4.3 - fold (p?<?.01). This study was conducted to elucidate the mechanism of enhanced oral absorption of ASD by the drug delivery system of APC-SNEDDS. The aggregation morphology and particle size of ASD and APC-SNEDDS prepared in aqueous solutions were determined by transmission electron microscope and particle size analyzer, respectively. Stability of ASD and APC-SNEDDS in gastrointestinal luminal contents and mucosa homogenates were also explored. The differences of in situ intestinal permeability of ASD and APC-SNEDDS were compared. APC-SNEDDS reduced the aggregation size from 389?±?7?nm (ASD) to 148?±?3?nm (APC-SNEDDS). APC-SNEDDS increased the remaining drug in large intestine luminal contents from 47?±?1% (ASD) to 83?±?1% (APC-SNEDDS) during 4?h incubation. APC-SNEDDS provided an 11-fold increase in Ka value and an 11-fold increase in Peff value compared to ASD. In summary, APC-SNEDDS improved ASD’s oral bioavailability mainly by increasing membrane permeability, destroying self-micelles and inhibiting the intestinal metabolism.  相似文献   

13.
The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box–Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384?±?21?nm and PDI of 0.172?±?0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42?±?0.73 versus 3.80?±?0.66?mg/L) and AUC0???t (193.61?±?16.30 versus 91.92?±?17.95?mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp.  相似文献   

14.
The aim of the present study was to develop a novel semi-solid self-microemulsifying drug delivery system (SMEDDS) using Gelucire® 44/14 as oil with strong solid character to improve the oral bioavailability of poorly soluble drug valsartan. The solubility of valsartan in various excipients was determined, the pseudo-ternary phase diagram was constructed in order to screen the optimal excipients, and DSC analysis was performed to evaluate the melting point of SMEDDS. The optimal drug-loaded SMEDDS formulation was consisted of 30% Gelucire® 44/14 (oil), 40% Solutol® HS 15 (surfactant), and 30% Transcutol® P (cosurfactant) (w/w) with 80?mg valsartan/g excipients. The average droplet sizes of the optimized blank and drug-loaded SMEDDS formulations were 26.20?±?1.43 and 33.34?±?2.15?nm, and the melting points of them were 35.6 and 36.8?°C, respectively. The in vitro dissolution rate of optimal semi-solid SMEDDS was increased compared with commercial capsules, resulting in the 2.72-fold and 2.97-fold enhancement of Cmax and AUC0–t after oral administration in rats, respectively. These results indicated that the novel semi-solid SMEDDS formulation could potentially improve the oral bioavailability of valsartan, and the semi-solid SMEDDS was a desirable system than the traditional liquid SMEDDS because it was convenient for preparation, storage and transportation due to semi-solid state at room temperature and melted state at body temperature.  相似文献   

15.
Objective: Methylnaltrexone (MNTX), a peripherally restricted opioid antagonist with mu-opioid receptor selectivity, can reduce opioid activity in the gastrointestinal tract while sparing the pain relief afforded by opioids. Since the bioavailability of oral MNTX is low, it is necessary to explore the oral formulations of MNTX that increase its bioavailability.

Materials and methods: An MNTX-phosphatidylcholine complex (MNTX-PC) formulation was prepared. The physicochemical properties of MNTX-PC were analyzed, and its bioavailability was evaluated in rats. After 250?mg/kg of oral MNTX-PC, plasma samples were collected up to 9?h. The concentrations of the compound in rat plasma were quantified using LC/MS/MS.

Results: Two MNTX plasma concentration peaks were observed at 120 and 180?min for the MNTX-PC group and control (MNTX in a water solution). Tmax was 180?min, Cmax was 1083.7?±?293.9?ng/mL, and T1/2 was 496?min for the MNTX-PC group. For control, Tmax was 180?min, Cmax was 448.4?±?126.0?ng/mL, and T1/2 was 259?min. The AUC0–540 min for the MNTX-PC group was 5758.2?±?1474.2?ngh/mL; for control, 1405.9?±?447.8?ngh/mL. Thus, the relative bioavailability after the oral administration of MNTX-PC was 410% compared to that of control.

Conclusion: MNTX-PC formulation significantly enhanced the oral bioavailability of MNTX.  相似文献   

16.
Abstract

The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6?±?2.9% with a vesicle size of 364.1?±?14.9?nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12?h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.  相似文献   

17.
Abstract

Objective: Nisoldipine (ND) is a potential antihypertensive drug with low oral bioavailability. The aim was to develop an optimal formulation of ND-loaded solid lipid nanoparticles (ND-SLNs) for improved oral bioavailability and pharmacodynamic effect by using a two-factor, three-level central composite design. Glyceryl trimyristate (Dynasan 114) and egg lecithin were selected as independent variables. Particle size (Y1), PDI (Y2) and entrapment efficiency (EE) (Y3) of SLNs were selected as dependent response variables.

Methods: The ND-SLNs were prepared by hot homogenization followed by ultrasonication. The size, PDI, zeta potential, EE, assay, in vitro release and morphology of ND-SLNs were characterized. Further, the pharmacokinetic (PK) and pharmacodynamic behavior of ND-SLNs was evaluated in male Wistar rats.

Results: The optimal ND-SLN formulation had particle size of 104.4?±?2.13?nm, PDI of 0.241?±?0.02 and EE of 89.84?±?0.52%. The differential scanning calorimetry and X-ray diffraction analyses indicated that the drug incorporated into ND-SLNs was in amorphous form. The morphology of ND-SLNs was found to be nearly spherical by scanning electron microscopy. The optimized formulation was stable at refrigerated and room temperature for 3 months. PK studies showed that 2.17-fold increase in oral bioavailability when compared with a drug suspension. In pharmacodynamic studies, a significant reduction in the systolic blood pressure was observed, which sustained for a period of 36?h when compared with a controlled suspension.

Conclusion: Taken together, the results conclusively demonstrated that the developed optimal ND-SLNs caused significant enhancement in oral bioavailability along with pharmacodynamic effect.  相似文献   

18.
The aim of this study was to improve the solubility, oral bioavailability, and anti-gastroesophageal reflux activity of curcumin (CM) by preparing two CM-loaded, novel, binary mixed micelles (CM-M). The two CM-M were prepared by ethanol thin-film hydration method. One (CM-T) was prepared using D-alpha-tocopheryl polyethylene glycol 1000 succinate and Solutol®HS15, and the other (CM-F) was prepared using Pluronic®F127 and Solutol®HS15. The entrapment efficiency and drug loading of CM-T were 83.61?±?0.54% and 2.20?±?0.65%, respectively, which were lower than those of CM-F (88.66?±?0.12% and 1.47?±?0.26%, respectively). TEM results demonstrated that CM-T and CM-F were homogeneous and spherical. The permeability of CM delivered via CM-T and CM-F was enhanced across a Caco-2 cell monolayer, and CM-T and CM-F showed a 5.24- and 4.76-fold increase in relative oral bioavailability, respectively compared with free CM. In addition, the in vivo anti-gastroesophageal reflux study showed that CM-T and CM-F achieved higher anti-gastroesophageal reflux efficacy compared with free CM. Collectively, these findings were indicative of an oral micelle formulation of CM with increased solubility, oral bioavailability, and anti-gastroesophageal reflux activity.  相似文献   

19.
In order to improve the in vitro dissolution rate and in vivo oral bioavailability of the poorly water soluble drug, felodipine (FELO), the wet-milling process was employed involving co-grinding with HPMC E5 and the in vitro release rate as investigated. After solidification by spray drying or freeze drying, the microsized powders were characterized in terms of their size, morphology, and in vitro dissolution rate. The oral bioavailability of this dry powder for suspension was evaluated in rats. After milling with 8% HPMC E5 and freeze drying, the powder mixture had an average particle size of 2.249?±?1.497?μm and displayed an excellent dissolution rate of up to 93.2% within 10?minutes. DSC and PXRD investigations confirmed the absence of any crystal transformation during the wet-milling process. Using two different solidification methods, powders were stable for 6 months with regard to their in vitro dissolution rate. Significantly improved bioavailability was obtained for the wet-milled suspension before solidification and freeze dried powders with 6.8- (p?p?p?>?0.05) in bioavailability was seen for the spray dried powders. These effects suggest that the solidification method plays an important role in modifying the bioavailability of FELO after wet milling. Consequently, wet-milling is an effective technique to enhance the bioavailability of FELO and to maintain these benefits, freeze-drying is a feasible approach to solidifying the wet-milled suspension for industrial applications.  相似文献   

20.
Abstract

Context: Muscle spasm is a painful involuntary contraction of muscles, which causes involuntary movement and distortion. Chlorzoxazone is a centrally acting muscle-relaxant with sedative properties, but given orally, it is hepatically metabolized leading to decreased bioavailability.

Objective: Orodispersible tablets (ODTs) of chlorzoxazone were formulated using two different approaches; by coprocessed excipients (CE) or by liquisolid (LS) technique.

Materials and methods: Pharmaburst® 500, Starlac®, Pearlitol flash®, Prosolv® odt and F-melt® were used as coprocessed superdisintegrants, whereas in LS, Avicel® PH101, Microcelac® 100 and Cellactose® 80 were used as carriers, while Aerosil® 200 was the coating material. ODTs were evaluated in terms of weight and thickness variations, drug content, hardness, friability, wetting time, dissolution, disintegration time (DT) and palatability.

Results: In vitro DT of CE-ODTs ranged from 26.43?±?1.693?s to >180?s, whereas it was between 25.42±?0.203?s to >180?s in LS-ODTs. Complete drug release within 15?min was attained by CE1 prepared with 92.5?mg Pharmaburst® 500. In vivo DT of CE1 and LS3 were 19.779?±?0.810 and 18.105?±?0.423?s, respectively, using six volunteers. Volunteers found that CE1 had more acceptable taste and was more palatable than LS3.

Conclusion: It was concluded that chlorzoxazone ODTs could be successfully formulated using either CE or LS techniques and be used as novel dosage forms for pediatrics and geriatrics showing improved drug release. Moreover, CE technique was superior to LS technique in terms of palatability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号