首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Albumin microspheres containing actinomycin D were prepared by the heat stabilization method. The compata-bility of the drug with magnetite and the optimum stability of the drug in different pH were studied. Drug loaded albumin microspheres containing magnetite showed good magnetic response. Release of the drug was slow and continued for 7 days exhibiting sustained release property. The difference as regards to the size, shape, drug content and release rate from freshly prepared and freeze dried drug loaded albumin microspheres was negligible.  相似文献   

2.
Abstract

Salbutamol sulphate loaded Bovine serum albumin microspheres were prepared by heat denaturation method. The effects of such preparation conditions as denaturation temperature, denaturation time, protein concentration and phase volume ratio on the extent of drug loading, size and size distribution and drug release were studied. An increase in protein concentration from 5% w/v to 15% w/v increased the mean particle size from 8.5 μm to 16.6 μm and decreased the drug loading from 46% w/w to 18% w/w. A decrease in the phase volume ratio substantially lowered mean particle size and size distribution. An increase in the severity of denaturaion conditions lowered both the drug incorporated and drug released. The kinetics of drug release from microspheres were compared to the theoretical models of Higuchi diffusional release and first order release. Both the models gave an adequate fit to the data. Scanning electron microscopy revealed that the dummy microspheres are spherical with smooth surfaces. As the drug-protein ratio increased, the microspheres exhibited rough surfaces showing the presence of drug crystals.  相似文献   

3.
Abstract

To develop a prolonged and sustained release preparation, we prepared an albumin microsphere-in-oil-in-water emulsion (S/O/W) and examined sustained release from it in comparison with other control preparations such as water-in-oil (W/O) emulsions and microspheres in vitro and in vivo, respectively. Tegafur was used as a model drug. A microsphere-in-oil emulsion was prepared by adding albumin microspheres to soybean oil containing 20% Span 80. To prepare an S/O/W emulsion, the microsphere-in-oil emulsion was added into an aqueous solution of hydroxypropyl methylcellulose containing Pluronic F68. The mean particle size of the albumin microspheres was 3 µm, and the ratio of entrapment of tegafur into albumin microspheres was about 25%. In an in vitro release test, the t75 of the S/O/W emulsion was fourfold greater and in an in vivo release test the mean residence time of tegafur from the S/O/W emulsion was more than twofold that from a W/O emulsion or microsphere system. The mean residence time of 5-fluorouracil (5-FU) from an S/O/W emulsion was also greater than with other dosage forms. These results suggest the possible usefulness of an S/O/W emulsion for the sustained and prolonged release of tegafur.  相似文献   

4.
Abstract

To minimize unwanted toxic effects of valproic acid (1) by the kinetic control of drug release, gastroresistant carnauba wax microspheres loaded with the antiepileptic agent were prepared. The preparation was based on a technique involving melting and dispersion of drug-containing wax in an aqueous medium. The resulting emulsion after cooling under rapid stirring produced solid, discrete, reproducible free flowing microspheres which converted the liquid drug droplets into solid material. About 94% of the isolated microspheres were of particle size range 200-425 μm. The microspheres were analyzed to determine the drug content in various particle size range and to characterize the in vitro release profile. The average drug content was 26% w/w. The intestinal drug discharge of 1 from the carnauba wax microspheres was studied and compared with the release patterns observed for white beeswax and hexadecanol microspheres previously described. The drug release performance was greatly affected by the material used in the microencapsulation process. In the intestinal environment carnauba wax microspheres exhibited more rapid initial rate of release and about 80% of the entrapped drug was discharged in 120 min while complete release occurred in about 8 h.  相似文献   

5.
Abstract

Albumin microspheres used as target drug delivery systems were prepared from egg albumin by polymerization technique using glutaral dehyde as the cross linking agent. The present study was designed to evaluate the effect of process variables on the nicrosphere size distribution and in vitro drug release. Phase volume ratio and speed of agitation exerted greater influence on the microsphere size distribution whereas the albumin concentration and cross linking time effected only the yield and surface characteristics of the microspheres respectively. Lower phase volume ratios resulted in small and uniform microspheres with smooth surfaces in narrow size range. Speed of agitation exhibited an inverse relationship with size. In vitro release pattern of drug from the microspheres showed a biphasic profile and the release rates were prolonged upon increase in the concentration of cross linking agent and cross linking time.  相似文献   

6.
Abstract

Enteric-coated epichlorohydrin crosslinked dextran microspheres containing 5-Fluorouracil (5-FU) for colon drug delivery was prepared by emulsification-crosslinking method. The formulation variables studied includes different molecular weights of dextran, volume of crosslinking agent, stirring speed, time and temperature. Dextran microspheres showed mean entrapment efficiencies ranging between 77 and 87% and mean particle size ranging between 10 and 25?µm. About 90% of drug was released from uncoated dextran microspheres within 8?h, suggesting the fast release and indicated the drug loaded in uncoated microspheres, released before they reached colon. Enteric coating (Eudragit-S-100 and Eudragit-L-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method. The release study of 5-FU from coated dextran microspheres was complete retardation in simulated gastric fluid (pH 1.2) and once the coating layer of enteric polymer was dissolved at higher pH (7.4 and 6.8), a controlled release of the drug from the microspheres was observed. Further, the release of drug was found to be higher in the presence of dextranase and rat caecal contents, indicating the susceptibility of dextran microspheres to colonic enzymes. Organ distribution and pharmacokinetic study in albino rats was performed to establish the targeting potential of optimized formulation in the colon.  相似文献   

7.
The purpose of this investigation was to evaluate the colon-targeted Irinotecan Hydrochloride (ITC-HCl) loaded microspheres by pharmacokinetic and biochemical studies. The microspheres were prepared by double emulsion solvent evaporation method with natural polymer Assam Bora rice starch. The microspheres were characterized for their micromeritics properties, incorporation efficiency, in vitro and in vivo drug release studies. The release study confirmed the insignificant release of ITC-HCl in physiological condition of stomach and small intestine and major drug release in the caecal content. In vivo release study of the optimized microsphere was compared with immediate release (IR) ITC-HCl. ITC-HCl was distributed predominantly in the upper GI tract from the IR, whereas ITC-HCl was distributed primarily to the lower part of GI tract from the microspheres formulation. Enhanced levels of liver enzymes were found in animals given IR ITC-HCl as well as augmented levels of serum albumin, creatinine, leucocytopenia and thrombocytopenia was also observed. In summary, Assam Bora rice starch microspheres exhibit slow and extended release of ITC-HCl over longer periods of time with reduced systemic side-effects.  相似文献   

8.
Abstract

Microspheres offer the possibility of target selectivity through choice of appropriate size or surface charecteristics, slow release of drug and also minimize systemic toxicity. The active substance of this investigation, cyclophosphamide (CP), interferes with the growth of cancer cells which are eventually destroyed. Since side effects of CP are frequently dose related, by incorporating low dose of CP to human serum albumin (HSA) microspheres, the normal body cells are not affected while the tumour cells are destroyed.

Cyclophosphamide microspheres were prepared by the modification of the method of Scheffel et al and Gürkan et al. 2,3-butanedione was used as a cross-linking agent. The albumin microspheres containing CP were labelled by 99mTc by incorporating SnC12.2H20 at a concentration of 5% of the matrix material. All the microspheres used in this study ranged between 1–5 μm.

A suspension of 99mTc labelled cyclophosphamide microspheres was injected into swiss albino mice intravenously. At 15 min, 30 rain, 6 h and 24 h mice were killed and the organs assayed for radioactivity accumulated in each organ. 1 hour later the radioactivity in the liver increased to 4.73 percent. By 24 hours, 2.68 percent of the radioactivity was found in the liver. Whereas the percentage of free cyclophosphamide at 1 and 24 hours was 2.22 and 2.57 percent, respectively. Based on the evidence obtained from these results, the application of CP loaded HSA microspheres seems advantages in accumulation in liver.  相似文献   

9.
ABSTRACT

Novel pH-sensitive copolymer microspheres containing methylacrylic acid and styrene cross-linking with divinylbenzene were synthesized by free radical polymerization. The microspheres that were formed were then characterized by Fourier-Transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), size analysis, and X-ray analysis. The copolymer microspheres showed pulsatile swelling behavior whenthe pH of the media changed. The pH-sensitive microspheres were loaded with diltiazem hydrochloride (DH). The release characteristics of the free drug and the drug-loaded microspheres were studied under both simulated gastric conditions and intestinal pH conditions. The in vivo evaluation of the pulsatile preparation was subsequently carried out using beagle dogs as experimental subjects. The results demonstrated that the drug release exhibited a pulsatile character both in vitro and in vivo.  相似文献   

10.
Abstract

Gelatin microspheres are prepared by emulsification of a aqueous gelatin solution in a oily phase containing a surfactant, gelation by cooling, dehydration by isopropanol and cross-linking by formaldehyde. The pH, the gelatin concentration in the aqueous solution and the surfactant concentration in the oily phase have some influence on the size distribution of unloaded and loaded microspheres and on the drug contents of microspheres.  相似文献   

11.
Abstract

Poly (D, L-lactic acid) (PLA) microspheres containing testosterone enanthate (ET) were prepared by using an oil-in-water (O/W) emulsion technique. The size distribution of the microspheres obtained could be explained by a log-normal distribution, and as a result, it was found that ET fully incorporates into microspheres even when the drug is loaded at up to 50%. On the other hand, the dissolution behavior of ET from microspheres was strongly dependent on particle size, suggesting that dissolution of the drug from microspheres can be easily controlled by controlling the preparative conditions.  相似文献   

12.
Abstract

Poly(DL-lactic acid) (PLA) microspheres containing testosterone (T) were prepared by the solvent evaporation process to evaluate their physical properties such as size distribution, shape, drug content, in vivo controlled drug release, pharmacological influences on the prostate gland in castrated rats, and histopathological findings of tissues surrounding the implants. The in vivo release of T from PLA microspheres containing 30 mg of drug obtained with chloroform was continued over a 6-week period. This effect is attributed to high dispersibility ofT in the device when obtained with chloroform. Both serum drug levels and prostate gland weight recovery suggested the effects of a long-acting drug delivery system. The histopathological findings showed that the devices used were completely degraded 10 weeks after injection.  相似文献   

13.
Abstract

Tolmetin microspheres were prepared by the coacervation process from the ethylcellulose. Microspheres were obtained both in presence and without protecting colloids, such as polyisobutilene (PIB) or ethyl-vinylacetate copolimers (EVA). The effect of these agents on the preparation, drug content, wall thickness, surface morphology, drug dissolution arid release from microspheres, were evaluated. The dissolution rate analysis was carried out also in the presence of a surfactant (Tween 80) at different pH values.

In addition, microspheres containing Tolmetin as a core material were submitted to biological tests, in comparison with the free drug, to evaluate upon experimental models the antipyretic activity and the gastric tolerability.  相似文献   

14.
Abstract

Microspheres containing indomethacin were prepared with various combinations of polymers Eudragit RS and Eudragit L. The effects of different ratios of polymers, solvent-polymer ratio, polymer-drug ratio and evaporation temperature on the physical characteristics of the microspheres as well as the in vitro release rate of the drug were investigated. All the factors studied had an influence on the physical characteristics of the microspheres. In vitro dissolution results showed that all formulations gave prolonged release of indomethacin and the release followed apparent zero order kinetics until 80% of drug had been released.  相似文献   

15.
ABSTRACT

Chitosan and poly(lactide-co-glycolide) acid (PLGA) microspheres loaded with alendronate sodium (AS) were prepared for orthopedic as well as dental applications. In orthopedics the aim was to make the total joint prostheses stay in the body for a long time without causing bone tissue loss, while in dentistry it was aimed to treat the alveolar bone resorption caused by periodontitis and also to make the dental treatment using implants easier by reducing the bone loss in patients with osteoporosis. Solvent evaporation method was used to prepare AS loaded PLGA microspheres and emulsion polimerization method was used to prepare AS loaded chitosan microspheres. Particle size, loading efficacy, surface characteristics, and in vitro release characteristics were examined on prepared formulations. After the examination of the scanning electron microscopy photographs of microspheres, chitosan microspheres were observed to have spherical structure and smooth surface characteristics while PLGA microspheres were observed to have spherical porous surface structure. Loading efficacy was found to be 3.30% for chitosan microspheres and 7.70% for PLGA microspheres. It was observed that 85% of AS had been released at the end of the third day from chitosan microspheres whereas 58% was released at the end of the fifth day from PLGA microspheres. It was found that chitosan microspheres gave first order release while PLGA microspheres gave zero order release.  相似文献   

16.
Abstract

Rat erythrocytes were loaded with isoniazid and magnetite by the preswell technique. Various parameters such as drug concentration, magnetite concentration, and volume of aqueous solution were optimized to study the maximum loading of drug into erythrocytes (67.2 ± 1.6%). The loaded cells were characterized for drug and magnetite content, hemoglobin content, percent cell recovery, morphology, osmotic fragility, turbulence shock, in-vivo drug and hemoglobin efflux, and magnetic responsiveness. No appreciable detrimental effect on cell morphology, osmotic fragility, and turbulence shock in comparison to normal cells was noted. However, drug and magnetite showed little detrimental effect on cells. Drug release from these systems followed approximately zero-order kinetics. Re drug- and magnetite-loaded cells effectively responded to an external magnetic field of 8.0 ± 1.0 K.Oe. The in-vivo studies showed that an erythrocyte-based delivery system has potential to increase drug concentration many fold at the target site under influence of an external magnetic field. The drug-loaded erythrocytes appeared to be promising carriers of isoniazid to infected organ/tissue.  相似文献   

17.
Abstract

Polyvinylacetate microspheres containing theophylline were prepared by emulsification and solvent removal method. The release pattern of theophylline from the microspheres was found to be best explained by diffusion controlled process. The rates of release were found to be influenced by drug-polymer ratios, size of microspheres, concentration of surfactant used for the preparation of microspheres, and pH of the dissolution media.  相似文献   

18.
Abstract

Hydrophilic albumin microspheres of etoposide were prepared by the emulsion polymerization technique using glutaraldehyde as the cross-linking agent. The microspheres prepared had a mean diameter of 1.5 μm. The microspheres were injected into mice by the intravenous route. In all, 12 mice were selected for the study, out of which 10 were given the drug-loaded microspheres and 2 were kept as solvent control. The mice were sacrificed after 24 hr and the accumulation of drug was determined in lungs, liver, and kidney.  相似文献   

19.
Abstract

The in vitro diffusion of nalidixic acid (1), pipemidic acid (2), cinoxacin (3), and norfloxacin (4) was studied. The transfer rate constants (kd) from simulated gastro-intestinal juices to simulated plasma, throughout artificial wall lipid membranes, were defined. The kd values suggested that the four drugs are absorbed both in gastric and intestinal environments in similar amounts. To obtain lack of gastric unwanted effects white beeswax microspheres containing 1, 2, 3, and 4 were investigated as a vehicle for the drug intestinal release; they were prepared by the meltable dispersion process using wetting agents. Discrete, reproducible free flowing microspheres were obtained. The drug content increased when the particle size growed; it ranged from 4% to 18%. More than 95% of the isolated microspheres were of particle size range 100–500 μm. The drug release was evaluated in vitro. Dissolution of entrapped active ingredients was greatly retarded allowing absorption only in the intestinal tract as result of microsphere formation.  相似文献   

20.
We prepared monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran (BLD)—a hydrophilic drug—by membrane emulsification technique. The effects of electrolyte addition to the w2 phase and significance of the droplet size ratio between primary (w1/o) and secondary (w1/o/w2) emulsions during the preparation of these microspheres was examined. The droplet size ratio was evaluated from the effect of stirring rate of the homogenizer when preparing the primary emulsion. The drug loading efficiency of BLD in these microspheres increased with stirring rate. It increased to approximately 90% when 2.0% NaCl was added to the w2 phase. Drug release from these microspheres was slower than that when they were prepared without electrolyte addition. Despite the very high efficiency drug release was gradual because BLD was distributed at the microspheres core. Relatively monodisperse hydrophilic-drug-containing PLGA microspheres with controlled drug loading efficiency and drug release behavior were prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号