首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained release potassium chloride tablets were prepared using a melt granulation formulation in a Baker Perkins Granulator. Parts of the validation for this manufacturing process are highlighted in this paper including granulation end point temperature, incorporation of extragranular excipients, amount of wax in the formulation, granule cooling rate and scale of the operation. A number of other factors have been studied which are not Included here although they are no less important. The release of potassium chloride from tablets was found to be dependent on the wax level and the amount of extragranular excipients (“wicklng agent”). Within the controlled production process, any variation in granulation end point temperature and granule cooling rate should not have any significant effect.  相似文献   

2.
Abstract

The purpose of this work has been the designing and “in vitro” evaluation of a potassium chloride tablet using a wax matrix.

Camauba wax, stearyl alcohol and stearic acid ware employed to prepare granulates at different drug/wax ratios. Fran dissolution kinetic studies and technological performances a 75/25 – KCl/camauba wax granulates was selected. The rheolqgical properties of granulates were characterized and tablets were manufactured employing ccrrmun tablets excipients. Also a coating procedure was developed. The coated tablet formulation selected release the potassium chloride according to the USP requirements.

The dissolution kinetics of the potassium chloride from both coated and uncoated tablets fit the Higuchi diffusion model, giving a straight line when the amount dissolved is plotted against the square root of time.  相似文献   

3.
The purpose of this work has been the designing and “in vitro” evaluation of a potassium chloride tablet using a wax matrix.

Camauba wax, stearyl alcohol and stearic acid ware employed to prepare granulates at different drug/wax ratios. Fran dissolution kinetic studies and technological performances a 75/25 - KCl/camauba wax granulates was selected. The rheolqgical properties of granulates were characterized and tablets were manufactured employing ccrrmun tablets excipients. Also a coating procedure was developed. The coated tablet formulation selected release the potassium chloride according to the USP requirements.

The dissolution kinetics of the potassium chloride from both coated and uncoated tablets fit the Higuchi diffusion model, giving a straight line when the amount dissolved is plotted against the square root of time.  相似文献   

4.
Abstract

The influence of excipients on drug release from chitosan matrix tablets was investigated, using diltiazem hydrochloride as model drug. Tablets were prepared by direct compression and the effect of different concentrations of the excipients lactose, sodium lauryl sulphate, sodium alginate, carbopol 934, citric acid and hydroxypropylmethyl-cellulose on drug release profiles was studied. Sustained release of the drug was obtained in all cases but the results indicate that both type and amount of excipient used influences drug release rate. The results support the idea that chitosan can be suitable as a basis for sustained release matrix tablets, and that drug release rate can be influenced by the addition of excipients. It is possible to make use of the interaction between chitosan and excipients in the formulation to provide further prolongation of release.  相似文献   

5.
Abstract

Wet granulation of a hydrophilic sustained release matrix tablet formulation has been studied. A fractional factorial experimental design was employed to identify principal influences and interacting factors from the following : granulation fluid volume, mixing time, mixer speed and inclusion of a wet screening step. Fluid volume and mixing time were primary factors affecting mean granule size. Fines in the granulation were reduced at higher fluid levels and by inclusion of a wet screening operation. There were several interacting factors influencing the particle size properties of the granulation. The factors studied had little influence on the bulk density of the granulation.

The influence of granule mean particle size on flow, compressibility and drug release from finished tablets was evaluated. Flow and compressibility were influenced by granule properties and the data generated suggested that should final tablet properties deteriorate on scale up it may be possible to ameliorate the effect by modification of granulation fluid volume or mixing time or both.

The factors studies had no influence on release of drug from finished tablets.  相似文献   

6.
The general utility of a method for determination of high-shear wet granulation end point by monitoring the wet granule particle size distribution was evaluated. Wet granulation was conducted in a 25-liter high-shear mixer using four model drugs with different solubilities and particle sizes (ethenzamide, unmilled and milled acetaminophen, and antipyrine). For each drug formulation, its wet granule particle size fraction and target range for granulation end point determination were selected based on the tablet characteristics that are known to be influenced by the wet granulation process. Granules manufactured under different conditions (i.e., different main and chopper blade speeds and binder supplying rate) but manufactured to the same granulation end point determined by the selected fraction and range showed very similar granule characteristics and subsequently very similar tabler characteristics. From the fact that there was a good correlation between the wet and dry-sized granule particle size distributions even if the drying method was changed from fluid-bed drying to vacuum drying, the general application of the end point determining method was verified. Further, the method was shown to be sensitive to the critical granulation parameters for granulation progression and to be very capable of determining the granulation extent. Thus, it was suggested that the method is applicable to various drugs and formulations for determination of wet granulation end point.  相似文献   

7.
Abstract

Sustained release tablets containing salbutamol sulphate has been prepared by wax matrix granulation method and were evaluated for in vitro release profile and in vivo availability studies in dogs. Out of the release retarding waxy materials used combinations of carnauba wax and stearyl alcohol in concentration range between 60 to 70% of the weight of the tablet were found to be optimum in fabricating sustained release tablets for twentyfour hours duration of action. The formulations were also compared with marketed products of salbutamol for in vitro release profile.  相似文献   

8.
The influence of excipients on drug release from chitosan matrix tablets was investigated, using diltiazem hydrochloride as model drug. Tablets were prepared by direct compression and the effect of different concentrations of the excipients lactose, sodium lauryl sulphate, sodium alginate, carbopol 934, citric acid and hydroxypropylmethyl-cellulose on drug release profiles was studied. Sustained release of the drug was obtained in all cases but the results indicate that both type and amount of excipient used influences drug release rate. The results support the idea that chitosan can be suitable as a basis for sustained release matrix tablets, and that drug release rate can be influenced by the addition of excipients. It is possible to make use of the interaction between chitosan and excipients in the formulation to provide further prolongation of release.  相似文献   

9.
The purpose of this study was to investigate the effect of three process variables: distribution of hydroxypropyl methylcellulose (HPMC) within the tablet matrix, amount of water for granulation, and tablet hardness on drug release from the hydrophilic matrix tablets. Tablets were made both by direct compression as well as wet granulation method. Three formulations were made by wet granulation, all three having the exact same composition but differing in intragranular:intergranular HPMC distribution in the matrix. Further, each formulation was made using two different amounts of water for granulation. All tablets were then compressed at two hardness levels. Dissolution studies were performed on all tablets using USP dissolution apparatus I (basket). The dissolution parameters obtained were statistically analyzed using a multilevel factorial-design approach to study the influence of the various process variables on drug release from the tablets. Results indicated that a change in the manufacturing process could yield significantly dissimilar dissolution profiles for the same formulation, especially at low-hardness level. Overgranulation could lead to tablets showing hardness-dependent drug-release characteristics. Studies showed that intergranular addition of a partial amount of HPMC (i.e., HPMC addition outside of granules) provided a significant advantage in making the formulation more robust over intragranular addition (i.e., that in which the entire amount of HPMC was added to the granules). Dissolution profiles obtained for these tablets were relatively less dependent on tablet hardness irrespective of the amount of water added during granulation.  相似文献   

10.
The purpose of this study was to evaluate sustained drug release after melt granulation and heat treatment. Theophylline (anhydrous) and phenylpropanolamine hydrochloride (PPA) were used as model drugs. Compritol® 888 ATO (Glyceryl Behenate NF) was incorporated as the wax matrix material. Formulations with drug:wax in 3:1 and 1:1 ratios were evaluated. Tablets were made by dry blending or melt granulation; some of the tablets were heat treated at 80°C for 30 min. Tablets with or without heat treatment were tested for drug release using in vitro drug dissolution. The results showed that melt granulation gave slower drug release than dry blending. Heat treatment further retarded drug release for both dry blending and melt granulation. The drug release rates for theophylline were slower than for PPA at the same wax level and processing method. The drug release profiles were linear using a square root of time scale. In conclusion, melt granulation and heat treatment slowed drug release for the wax matrix-controlled release tablets. Heat treatment of the tablets made by melt granulation further retarded drug release. Heat treatment redistributed the wax, forming a new matrix system with higher tortuosity. The application of melt granulation or heat treatment can successfully retard drug release.  相似文献   

11.
Wet granulation of a hydrophilic sustained release matrix tablet formulation has been studied. A fractional factorial experimental design was employed to identify principal influences and interacting factors from the following : granulation fluid volume, mixing time, mixer speed and inclusion of a wet screening step. Fluid volume and mixing time were primary factors affecting mean granule size. Fines in the granulation were reduced at higher fluid levels and by inclusion of a wet screening operation. There were several interacting factors influencing the particle size properties of the granulation. The factors studied had little influence on the bulk density of the granulation.

The influence of granule mean particle size on flow, compressibility and drug release from finished tablets was evaluated. Flow and compressibility were influenced by granule properties and the data generated suggested that should final tablet properties deteriorate on scale up it may be possible to ameliorate the effect by modification of granulation fluid volume or mixing time or both.

The factors studies had no influence on release of drug from finished tablets.  相似文献   

12.
Moisture activated dry granulation (MADG) method was used to develop IR tablets with cohesive, fluffy and high dose drugs. To evaluate this approach, three drugs: metformin hydrochloride, acetaminophen and ferrous ascorbate were selected as model compound along with three binders: maltodextrin DE16, PVP K 12 and HPC. The granules were generated using MADG method and tablets were prepared using rotary tablet press. The granules and tablets were characterized for particle size analysis, flow properties, tablet hardness, friability, moisture content, dissolution study, disintegration time and stability study. All results were found to be within acceptable limits. Development of all formulation tablets were found as best fitted for an immediate release of Metformin hydrochloride, acetaminophen and ferrous ascorbate. MADG delivered a robust manufacturing process for generation of granules with excellent flowability. The tablets prepared using this method were found to show better content uniformity, good compactability and low friability. Use of this approach aids to lower the amount of excipients used to overcome physiochemical limitation of the drug substances and there side effects. Both drying and milling steps in wet granulation were not required for MADG process. MADG became a cost effective process which could lead to reduced total tablet size and also save time.  相似文献   

13.
Three processing methods were compared to develop a low dose (0.1%) immediate release tablet. Similar formulations were used to evaluate low shear, high shear, and fluid bed granulation methods. For each granulation process, the drug was dissolved or suspended in the granulating fluid and sprayed into the granulator. Both water and methanol were evaluated as granulating fluids. The low shear granulation was performed in a Patterson-Kelley V-Blender with I-bar. The high shear granulation was performed in a GRAL (top entry impeller) and a Diosna (bottom mounted impeller). Fluid bed granulation was also performed using top-spray. Acceptable content uniformity was obtained using each technology. The type of granulator and granulating solvent affected the granulation particle size distributions and bulk/tap densities. However, the addition of extragranular microcrystalline cellulose minimized the effect of variable granulation properties and allowed similar tablets to be produced from each granulation process.  相似文献   

14.
Context: Knowledge of the effects of high-shear granulation process parameters and scale-up on the properties of the produced granules is essential for formulators who face challenges regarding poor flow and compaction during development of modified release tablets based on high-molecular weight hypromellose (hydroxypropylmethylcellulose (HPMC)) polymers. Almost none of the existing studies deal with realistic industrial formulation.

Objective: The aim was to investigate the effects of scale-up and critical process parameters (CPPs) of high-shear granulation on the quality attributes of the granules, particularly in terms of the flow and compaction, using a realistic industrial formulation based on HPMC K100M polymer.

Methods: The flow properties were determined using flow time, Carr index, tablet mass, and crushing strength variations. The compaction properties were quantified using the ‘out-of-die’ Heckel and modified Walker models, as well as the tensile strength profile and elastic recovery. High-shear granulation was performed at different scales: 4?L, 300?L, and 600?L.

Results and conclusion: The scale itself had larger effects on the granule properties than the CPPs, which demonstrated high robustness of formulation on the individual scale level. Nevertheless, to achieve the desired flow and compaction, the values of the CPPs need to be precisely selected to fine-tune the process conditions. The best flow was achieved at high volumes of water addition, where larger and more spherical granules were obtained. The CPPs showed negligible influence on the compaction with no practical implications, however, the volume of water addition volume was identified as having the largest effects on compaction.  相似文献   

15.
ABSTRACT

This investigation deals with the development of buccal tablets containing chlorhexidine (CHX), a bis-bis-guanide with antimicrobial and antiseptic effects in the oral cavity, and able to adhere to the buccal mucosa to give local controlled release of drug. A mucoadhesive formulation was designed to swell and form a gel adhering to the mucosa and controlling the drug release into the oral cavity.

Some batches of tablets were developed by direct compression, containing different amounts of hydroxypropylmethylcellulose (HPMC) and carbomer; changing the amount ratio of these excipients in formulations, it is possible easily modulate the mucoadhesive effect and release of drug. The in vitro tests were performed using the USP 26/NF paddle apparatus, a specifically developed apparatus, and a modified Franz diffusion cells apparatus. This last method allows a simultaneous study of drug release rate from the tablets and drug permeation through the buccal mucosa.

Similar tests have also been carried out on a commercial product, Corsodyl gel®, in order to compare the drug release control of gel with respect to that of the mucoadhesive tablet, as a formulation for buccal delivery of CHX. While the commercial formulation does not appear to control the release, the formulation containing 15% w/w methocel behaves the best, ensuring the most rapid and complete release of the drug, together with a negligible absorption of the active agent as required for a local antiseptic action in the oral cavity.  相似文献   

16.
Abstract

A melt granulation process has been investigated (1, 2) which efficiently agglomerates pharmaceutical powders for use in both immediate- and sustained-release solid dosage forms. The process utilizes materials that are effective as granulating fluids when they are in the molten state. Cooling of the agglomerated powders and the resultant solidification of the molten materials completes the granulation process. Both the molten agglomeration and cooling solidification were accomplished in a high shear Collette Gral mixer equipped with a jacketed bowl. Hence, the melt granulation process replaces the conventional granulation and drying operations which use water or alcohol solutions. The melt granulation process has been investigated using immediate- and sustained-release TAVIST® (clemastine fumarate USP) tablet formulations. The TAVIST granulations have been characterized by power consumption monitoring, measurement of the granulation particle size distribution, bulk and tapped density determinations, and loss-on-drying measurements. Scale-up of the melt granulation process for the sustained release TAVIST tablet formulation was judged successful based on a comparison of the hardness, friability, weight uniformity during compression, disintegration time, and dissolution rate data obtained at different manufacturing scales.  相似文献   

17.
ABSTRACT

Slow-release matrix granules were manufactured in the fluidized bed using an aqueous dispersion of quaternary poly(meth)acrylates (Eudragit® RS 30 D) as binder for granulation. A factorial design was carried out to investigate the influence of the following parameters, spraying rate, applied polymer amount, and inlet air temperature, on various granule properties. Prerequisites for a slow release of the model drug theophylline are high spraying rate, high amount of polymer, and low inlet air temperature. No considerable decrease of the drug release rate can be achieved without a subsequent curing of the dry granules. A clear correlation exists between the moisture content of the fluidized bed, indicated by the terminal moisture content (TMC), and the mean dissolution time for 80% of the drug (MDT80).  相似文献   

18.
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70°C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.  相似文献   

19.
The objectives of this study were to investigate the properties of poly(vinyl acetate) (PVAc) as a retardant polymer and to study the drug release mechanism of theophylline from matrix tablets prepared by hot-melt extrusion. A physical mixture of drug, polymer, and drug release modifiers was fed into the equipment and heated inside the barrel of the extruder. The cylindrical extrudates were either cut into tablets or ground into granules and compressed with other excipients into tablets. Due to the low glass transition temperature of the PVAc, the melt extrusion process was conducted at approximately 70°C. Theophylline was used as the model drug in this study. Theophylline was present in the extrudate in its crystalline form and was released from the tablets by diffusion. The Higuchi diffusion model and percolation theories were applied to the dissolution data to explain the drug release properties of the matrix systems. The release rate was shown to be dependent on the granule size, drug particle size, and drug loading in the tablets. Water-soluble polymers were demonstrated to be efficient release rate modifiers for this system.  相似文献   

20.
Abstract

The effects of formulation variables on the release profile of diclofenac sodium from ethyl cellulose (EC) and hydroxypropylmethyl cellulose (HPMC) matrix tablets were investigated. With increase in viscosity of ethyl cellulose used in nonaqueous granulation, a decrease in drug release from the tablets was observed, while the percentage of fines articles passed through 60 mesh) in the granulation had a significant effect on the dissolution profile. Granules containing 15% fines exhibited slow release of the drug in comparison to those containing 30% fines with EC matrices. An analysis of kinetics of drug release from hydrophobic EC matrix showed Fickian diffusion regulated dissolution. Drug release from HPMC tablets followed an apparent zero-order kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号