首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Context: Development of solid dispersions is to improve the therapeutic efficacy by increasing the drug solubility, dissolution rate, bioavailability as well as to attain rapid onset of action.

Objective: The present research deals with the development of solid dispersions of flurbiprofen which is poorly water soluble to improve the solubility and dissolution rate using gelucires.

Materials and methods: In this study, solid dispersions were prepared following solvent evaporation method using gelucire 44/14 and gelucire 50/13 as carriers in different ratios. Then the formulations were evaluated for different physical parameters, solubility studies, DSC, FTIR studies and in vitro dissolution studies to select the best formulation that shows rapid dissolution rate and finally subjected to pharmacokinetic studies.

Results and discussion: From the in vitro dissolution study, formulation F3 showed the better improvement in solubility and dissolution rate. From the pharmacokinetic evaluation, the control tablets produced peak plasma concentration (Cmax) of 9140.84?±?614.36?ng/ml at 3?h Tmax and solid dispersion tablets showed Cmax?=?11?445.46?±?149.23?ng/ml at 2?h Tmax. The area under the curve for the control and solid dispersion tablets was 31?495.16?±?619.92 and 43?126.52?±?688.89?ng h/ml and the mean resident time was 3.99 and 3.68?h, respectively.

Conclusion: From the above results, it is concluded that the formulation of gelucire 44/14 solid dispersions is able to improve the solubility, dissolution rate as well as the absorption rate of flurbiprofen than pure form of drug.  相似文献   

2.
Context: Along with other options, solid dispersions prepared by spray drying offer the possibility of formulating poorly soluble drugs in a rapidly dissolving format. As a wide range of potential excipients and solvents is available for spray drying, it is usually necessary to carry out a comprehensive array of studies to arrive at an optimal formulation.

Objective: To study the influence of formulation parameters such as co-sprayed excipients, solvents and packaging on the manufacture, in vitro performance and stability of spray-dried oral drug products using fenofibrate as a model drug.

Materials and methods: Solid dispersions of fenofibrate with different amorphous polymers were manufactured from two solvent systems by spray drying. These were characterized in terms of physicochemical properties, crystalline content and dissolution behavior in biorelevant media upon production and after storage in two packaging systems (Glass and Activ-Vials?).

Results and discussion: Spray drying the same formulation from two different solvents led to different physicochemical properties, dissolution behavior and long-term stability. The dissolution behavior and long-term stability also varied significantly among excipients. The viscosity of the polymer and the packaging material proved to be important to the long-term stability.

Conclusion: For spray-dried products containing fenofibrate, the excipients were ranked according to dissolution and stability performance as follows: PVP derivatives >> HPMC 2910/15, HPMCAS-MF, HP-β-CD >> PVP:PVA 2:8. EtOH 96% proved superior to acetone/water for spray drying with polymers. The results were used to propose a general approach to developing spray-dried formulations of poorly soluble drugs.  相似文献   

3.
Abstract

The effects of different formulations and processes on inducing and maintaining the supersaturation of ternary solid dispersions of ezetimibe (EZ) in two biorelevant media fasted-state simulated intestinal fluid (FaSSIF) and fasted-state simulated gastric fluid (FaSSGF) at different temperatures (25?°C and 37?°C) were investigated in this work.

Ternary solid dispersions of EZ were prepared by adding polymer PVP-K30 and surfactant poloxamer 188 using melt-quenching and spray-drying methods. The resulting solid dispersions were characterized using scanning electron microscopy, differential scanning calorimetry (DSC), modulated DSC, powder X-ray diffraction and Fourier transformation infrared spectroscopy. The dissolution of all the ternary solid dispersions was tested in vitro under non-sink conditions.

All the prepared solid dispersions were amorphous in nature. In FaSSIF at 25?°C, the melt-quenched (MQ) solid dispersions of EZ were more soluble than the spray-dried (SD) solid dispersions and supersaturation was maintained. However, at 37?°C, rapid and variable precipitation behavior was observed for all the MQ and SD formulations. In FaSSGF, the melting method resulted in better solubility than the spray-drying method at both temperatures.

Ternary solid dispersions show potential for improving solubility and supersaturation. However, powder dissolution experiments of these solid dispersions of EZ at 25?°C may not predict the supersaturation behavior at physiologically relevant temperatures.  相似文献   

4.
Context: Piperine alkaloid, an important constituent of black pepper, exhibits numerous therapeutic properties, whereas its usage as a drug is limited due to its poor solubility in aqueous medium, which leads to poor bioavailability.

Objective: Herein, a new method has been developed to improve the solubility of this drug based on the development of solid dispersions with improved dissolution rate using hydrophilic carriers such as sorbitol (Sor), polyethylene glycol (PEG) and polyvinyl pyrrolidone K30 (PVP) by solvent method. Physical mixtures of piperine and carriers were also prepared for comparison.

Methods: The physicochemical properties of the prepared solid dispersions were examined using SEM, TEM, DSC, XRD and FT-IR. In vitro dissolution profile of the solid dispersions was recorded and compared with that of the pure piperine and physical mixtures. The effect of these carriers on the aqueous solubility of piperine has been investigated.

Results: The solid dispersions of piperine with Sor, PEG and PVP exhibited superior performance for the dissolution of piperine with a drug release of 70%, 76% and 89%, respectively after 2?h compared to physical mixtures and pure piperine, which could be due to its transformation from crystalline to amorphous form as well as the attachment of hydrophilic carriers to the surface of poorly water-soluble piperine.

Conclusion: Results suggest that the piperine solid dispersions prepared with improved in vitro release exhibit potential advantage in delivering poorly water-soluble piperine as an oral supplement.  相似文献   

5.
Objective: To accelerate the determination of optimal spray drying parameters, a “Design of Experiment” (DoE) software was applied to produce well redispersible hesperidin nanocrystals.

Significance: For final solid dosage forms, aqueous liquid nanosuspensions need to be solidified, whereas spray drying is a large-scale cost-effective industrial process.

Methods: A nanosuspension with 18% (w/w) of hesperidin stabilized by 1% (w/w) of poloxamer 188 was produced by wet bead milling. The sizes of original and redispersed spray-dried nanosuspensions were determined by laser diffractometry (LD) and photon correlation spectroscopy (PCS) and used as effect parameters. In addition, light microscopy was performed to judge the redispersion quality.

Results: After a two-step design of MODDE 9, screening model and response surface model (RSM), the inlet temperature of spray dryer and the concentration of protectant (polyvinylpyrrolidone, PVP K25) were identified as the most important factors affecting the redispersion of nanocrystals. As predicted in the RSM modeling, when 5% (w/w) of PVP K25 was added in an 18% (w/w) of hesperidin nanosuspension, subsequently spray-dried at an inlet temperature of 100?°C, well redispersed solid nanocrystals with an average particle size of 276?nm were obtained. By the use of PVP K25, the saturation solubility of the redispersed nanocrystals in water was improved to 86.81?µg/ml, about 2.5-fold of the original nanosuspension. In addition, the dissolution velocity was accelerated.

Conclusions: This was attributed to the additional effects of steric stabilization on the nanocrystals and solubilization by the PVP polymer from spray drying.  相似文献   

6.
Context: Naringenin (NRG), the aglycone flavonoid present in grapefruits, possesses anti-inflammatory, anti-carcinogenic, anti-lipid peroxidation and hepato-protective effects. However, it is poorly soluble in water and exhibits slow dissolution after oral ingestion, thus restricting its therapeutic efficacy.

Objective: With the aim to enhance the dissolution rate and oral bioavailability of NRG, solid dispersion technique has been applied using Soluplus® as carrier.

Methods: Solid dispersions of NRG were prepared by solvent evaporation and kneading methods using various ratios (1:4, 3:7, 2:3 and 1:1) of NRG:Carrier. Characterization of the optimized formulations was performed using Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. The in vivo behavior of the optimized formulations was also investigated in Wistar Albino rats.

Results: NRG solid dispersion showed a significantly higher solubility and drug dissolution rate than pure NRG (p?Conclusion: Based on these results, it was concluded that solid dispersion technique markedly enhances the in vitro drug release and in vivo behavior of the grapefruit flavonoid NRG.  相似文献   

7.
Context: Pharmaceutical solid dispersions are known to be seriously affected by issues of aging and processing.

Objective: This study investigated the spectral patterns in the solid dispersions (SD) of Nifedipine/Soluplus/Kollidon SR and the feasibility of the methodology in identification and evaluation of the solid dispersions.

Methods: The SD samples were prepared by hot melt extrusion (HMESD), solvent-evaporation (SESD), and fusion-cooling (FCSD). In order to distinguish the different SD samples, a combined analytical strategy by FT-IR spectrum, Raman spectrum, and computational approaches (PCA and HCA) were developed to investigate the spectral patterns of the solid dispersions. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and dissolution test were employed as the reference characterization. The stability test under the accelerated condition was carried out to investigate the physical stability of the SDs.

Result: For the three prepared SDs, the evident differences on the dissolution behaviors and the trend of aging was observed. By means of the combined analytical strategy, the samples could be successfully identified in terms of their preparing techniques. The strength of hydrogen bonding interaction between NF and polymers decreased in the order of HMESD?>?SESD?>?FCSD. The results of the stability test indicated that the similarity factor f2 value of dissolution profile decreased in the order of HMESD?>?SESD?>?FCSD. HMESD exhibited a tendency of minimal changing on both dissolution behavior and spectral patterns.

Conclusion: The combined strategy suggested the possibility for identification of specific SDs in quality control and prediction of their trends on the aging.  相似文献   

8.
The purpose of this study was to increase the solubility of glipizide (gli) by solid dispersions SDs technique with polyvinylpyrrolidone (PVP) in aqueous media. The gli-PVP solid dispersion systems was prepared by physical mixing or spray drying method, and characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) analysis, Fourier transformation-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The elementary osmotic pumps (EOPs) were prepared with gli-PVP complex and the effect of the PVP percentages on the enhancing of gli dissolution rate was studied. The influences of various parameters e.g., drug- PVP ratio, level of solubility modifier, coating weight gain and diameter of drug releasing orifice on drug release profiles were also investigated. The solubility and dissolution rates of gli were significantly increased by solid dispersion using spray dried method as well as their physical mixture. The obtained results indicated that gli-PVP solid dispersion system has suitable solubility behavior in EOP tablets.  相似文献   

9.
Objective: This study aimed to evaluate kinetic solubility advantage of amorphous etoricoxib solid dispersions prepared with three water soluble polymers and correlate it with solid state and supersaturated drug solution stabilization potential of these polymers.

Methods: Amorphous solid dispersions (ASDs) of etoricoxib were prepared with polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP) and hydroxyethyl cellulose (HEC) at 70:30w/w ratio and characterized for glass transition temperature (Tg), miscibility and intermolecular interactions. Kinetic solubility profiles of amorphous etoricoxib and its ASDs were determined in water at 37 °C. Solid-state stability was assessed by enthalpy relaxation studies at a common degree of undercooling of around 19.0 °C at 0% RH. Recrystallization behavior of supersaturated drug solution was evaluated in the absence and presence of pre-dissolved polymer at 37 °C.

Results: Amorphous etoricoxib exhibited rapid solid-to-solid transition to yield a solubility advantage of merely 1.5-fold in water. Among the ASDs, etoricoxib-PVP dispersion exhibited maximal “peak” (2-fold) and “plateau” (1.8-fold) solubility enhancement, while etoricoxib-PVA dispersion could only sustain the “peak” solubility achieved by amorphous etoricoxib. In contrast, etoricoxib-HEC dispersion displayed no solubility advantage. The rank order for solid state and supersaturated solution stabilization followed a similar trend of amorphous etoricoxib?Conclusion: Dissolution behavior of ASDs is influenced by concomitantly occurring solid phase changes, thus understanding these processes independently can enable assessment of the predominant route of drug crystallization and stabilization by the polymer.  相似文献   

10.
Objectives: The aim of this research was to design a controlled release, spray dried, mupirocin calcium-loaded microparticles (MP) with acrylic polymer and assess the influence of a feed solvent at preselected drug:polymer proportions (1:5 and 2:1 (w/w)) on the performance and stability of the prepared MP.

Methods: Physicochemical properties of MP were assessed using modulated differential scanning calorimetry (MDSC), and thermogravimetric analyses (TGA), Fourier transformed infrared spectroscopy (FTIR) and X-ray analyses and were correlated with drug release. Morphology and particle size were determined using low-angle laser light scattering and a scanning electron microscope. A time-kill assay was conducted on two strains of Staphylococcus aureus to evaluate the antimicrobial activity of MP.

Results and discussion: The MP formed solid dispersions without apparent drug crystallization. Drug-polymer miscibility, morphology, drug release and consequently antimicrobial activity were dependent on drug loading (DL) and the used solvent. The superior control of drug release from MP was achieved for the higher DL (2:1 (w/w) drug:polymer proportion) using solvents in the following order: methanol ≈ methanol:ethanol (50:50, w/w) > isopropanol:acetone (40:60, w/w). Moreover, a time-kill assay performed on S. aureus (ATCC 29213) and methicillin-resistant S. aureus strains confirmed the prolonged release and preservation of antimicrobial activity of the microencapsulated drug. The physical aging of the solid dispersion after 10 months of storage had negligible impact on the MP performance.

Conclusions: Acrylic-based MP were confirmed as suitable microcarriers for prolonged drug release using a well-established spray drying technique, while solvent influence was strongly related to the DL employed.  相似文献   

11.
Context: Flutamide (FLT) has poor aqueous solubility and low oral bioavailability. Objective: Lyophilization monophase solution was used for preparing lyophilized dispersions of FLT with polyols and amino acids to increase its poor dissolution. Methods: Physical properties and dissolution behavior of their physical mixtures and lyophilized dispersions were investigated. Results and discussion: The carriers increased the aqueous solubility of FLT but to a limited extent with arginine and glycine showing a linear AL-phase solubility diagrams. Gas chromatography indicated that residual tertiary butyl alcohol was in range of 0.007?0.023% (w/w) in the dispersions. In all dispersions, the crystal structure of FLT was confirmed using differential scanning calorimetry, X-ray diffractometry, and scanning electron microscopy. However, the percent drug crystallinity was found to decrease with increasing the carrier content. Infrared spectroscopy revealed no interaction between drug and carriers. The particle size of FLT dispersions ranged between 0.61 and 1.81 μm, with a high surface area (293.93?465.37 m2/g) and porosity (447.69?754.33 e-3 mL/g). In addition, the poor flow properties of FLT were improved but to a limited extent. FLT dissolution from the dispersions was enhanced with 46.35% and 36.43% of FLT dissolved after 30 minutes from 1:5 FLT–mannitol and FLT–trehalose dispersions, respectively, compared with only 13.45% of pure FLT. On the other hand, after 30 minutes 38.57% and 46.78% of FLT was dissolved from 1:3 FLT–arginine and FLT–glycine dispersions, respectively. Conclusion: These data suggest that polyols and amino acids might be useful adjuncts in preparation of immediate-release formulations of FLT.  相似文献   

12.
The purpose of this study was to increase the solubility of glipizide (gli) by solid dispersions SDs technique with polyvinylpyrrolidone (PVP) in aqueous media. The gli–PVP solid dispersion systems was prepared by physical mixing or spray drying method, and characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) analysis, Fourier transformation-infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The elementary osmotic pumps (EOPs) were prepared with gli–PVP complex and the effect of the PVP percentages on the enhancing of gli dissolution rate was studied. The influences of various parameters e.g., drug- PVP ratio, level of solubility modifier, coating weight gain and diameter of drug releasing orifice on drug release profiles were also investigated. The solubility and dissolution rates of gli were significantly increased by solid dispersion using spray dried method as well as their physical mixture. The obtained results indicated that gli–PVP solid dispersion system has suitable solubility behavior in EOP tablets.  相似文献   

13.
Context: Transdermal spray (TS) of clotrimazole (CTZ) was formulated to improve the drug transport through the skin up to 12?h to achieve the antifungal efficacy.

Objective: The aim of present study was to formulate and evaluate antifungal transdermal spray to improve the permeation of clotrimazole across the skin and to decrease the dosing frequency in fungal infection.

Materials and methods: Different ratios of ethanol and acetone and various grades of eudragit and ethyl cellulose were evaluated according to six criteria: viscosity, drying time, stickiness, appearance and integrity on skin and water washability. Propylene glycol (PG) and polyethylene glycol 400 (PEG 400) were used in the study as plasticizer and solubilizer. The TS was evaluated for in vitro drug release, spray angle, spray pattern, average weight per dose, pH, drug content, evaporation time, leak test and antifungal efficacy study.

Results and discussion: Eudragit E100 and blend of ethanol and acetone (80:20) satisfied the desired criteria. The selection of optimized batch was based on the results of in vitro drug release, spray pattern and spray angle. The optimized batch showed the spray angle <85° and uniform spray pattern. The formulation containing PG showed higher drug release than PEG 400. The inclusion of eutectic mixture consisting of camphor and menthol (1:1) showed improved drug transport through the rat skin and larger mean zone of inhibition indicating the improved antifungal efficacy.

Conclusion: The TS of CTZ can be an innovative and promising approach for the topical administration in the fungal diseases.  相似文献   

14.
Abstract

A solid dispersion technique with poly(vinylmethylether/ maleic anhydride) (PVM/MA) and its half esters has been used to enhance griseofulvin dissolution.

A marked increase of the dissolution rate and solubility of griseofulvin contained in these solid dispersions was observed compared with that of drug alone and that of physical mixture with the carrier.

Differences in dissolution rates resulted from the molecular weight and the chemical structure of the carrier.

X-Ray powder diffractometry, differential scanning calorimetry (DSC) and wettability tests were employed to investigate the nature of the studied forms.  相似文献   

15.
Abstract

Solid dispersions of a very slightly water-solubte drug, ursodeoxycholic acid (UDCA), were prepared using urea, mannitol, and PEG 6000 as a carrier, and the solubility of UDCA was determined in water-ethanol (1:1) mixed solvent as a function of UDCA-carrier ratio. The solubility of UDCA was slightly improved when urea or PEG 6000 was used as a carrier. The powder x-ray diffraction measurements revealed that UDCA did not exist in the crystalline state in the solid dispersions. Differential scanning calorimetry (DSC) studies showed that UDCA was able to dissolve in the melt of urea, mannitol, and PEG 6000. The effect of carriers of solid dispersions on the UDCA dissolution rate was examined. The dissolution rate of UDCA was markedly increased from the solid dispersions of urea, PEG 6000, and mannitol, respectively.  相似文献   

16.
Introduction: The aim of this study was to investigate ketorolac (KT) systemic absolute bioavailability after sublingual (SL) administration in vivo to conscious rabbits. Furthermore, the study investigated the potential use of chitosan nanoparticles as a delivery system to enhance the systemic bioavailability of KT following SL administration.

Methods: Ketorolac-loaded chitosan nanoparticles were prepared through ionotropic gelation of chitosan with tripolyphosphate anions. The KT-nanoparticles were administered SL as a spray to rabbits and KT plasma concentration at predetermined time points was compared to SL spray administration of KT in solution. The concentrations of KT in plasma were analyzed by ultra-performance liquid chromatography mass spectroscopy (UPLC/MS).

Results: KT-loaded chitosan nanoparticles significantly (p?Conclusions: The results of the present study suggest that SL absorption of KT illustrated flip-flop kinetics with prolonged persistence in the body compared to intravenous administration. Formulation of KT as chitosan nanoparticles has increased its systemic bioavailability after SL spray administration. The new delivery system could be an attractive approach for the delivery of KT.  相似文献   

17.
Novel solid dispersions of oleanolic acid-polyvinylpolypyrrolidone (OLA-PVPP SDs) were designed and prepared to improve the apparent solubility of drug, as well as to improve the stability, fluidity and compressibility of SDs. Disintegrable OLA-PVPP SDs were then evaluated both in vitro and in vivo. DSC, XRD, IR and SEM analysis proved the formation of OLA-PVPP SD and its amorphous state. The results of fluidity study, moisture absorption test and stability test showed that OLA-PVPP SD with good fluidity and qualified stability was successfully obtained. Meanwhile excellent dissolution rate was achieved for in vitro studies; dissolution test showed that ~50–75% of OLA was dissolved from SDs within the first 10?min, which is about 10–15 times of free OLA. In vivo study indicated that the formation of solid dispersion could largely improve the absorption of OLA, resulting in a much shorter Tmax (p?Cmax (p?0→∞ of OLA-PVPP SDs (1:6) were 155.4?±?37.24?h·ng/mL compared to the 103.11?±?26.69?h·ng/mL and 94.92?±?13.05?h·ng/mL of OLA-PVPP physical mixture (1:6) and free OLA, respectively. These proved PVPP could be a promising carrier of solid dispersions and was industrially feasible alternative carrier in the manufacture of solid dispersions.  相似文献   

18.
Objective: The aim of this study was to develop mupirocin topical spray using Eudragit E100 as a film-forming agent for the treatment of bacterial skin infections as well as to promote wound healing.

Materials and methods: Twenty-seven of mupirocin formulations were formulated containing Eudragit E100 and other excipients. Mupirocin spray was prepared by aerosol crimping and filling machine using HFA-134a as a propellant. The formulations were evaluated for their stability and physicochemical properties. The factorial study was applied to evaluate the effects of glycerol and PEG400 on mupirocin-loaded Eudragit E100 films. The optimized formulation was assessed of drug release, antibacterial activities and in vitro cell line studies in comparison to the ointment formulation.

Results and discussion: Mupirocin sprays were formulated and optimized to obtain the formulation with excellent physicochemical and mechanical properties of the dressing film. The formulation had an excellent stability up to a year with more than 80% of mupirocin content. Mupirocin was released from the film up to 90% within 2?h. The formulation had a potent antibacterial effect against S. aureus and S. epidermidis. The formulation was safe to use as a topical formulation that had no toxicity to keratinocytes, fibroblasts and monocytes. The formulation also had an antiendotoxin effect without stimulating the production of NO and inflammatory cytokines (IL-1β and TNF-α).

Conclusions: Mupirocin topical spray was successful developed as a topical formulation and can be used instead of the ointment formulation. Animal experiments are warranted to further emphasize the safe use in the human skin.  相似文献   

19.
Solid dispersion has been a topic of interest in recent years for its potential in improving oral bioavailability, especially for poorly water soluble drugs where dissolution could be the rate-limiting step of oral absorption. Understanding the physical state of the drug and polymers in solid dispersions is essential as it influences both the stability and solubility of these systems. This review emphasizes on the classification of solid dispersions based on the physical states of drug and polymer. Based on this classification, stability aspects such as crystallization tendency, glass transition temperature (Tg), drug polymer miscibility, molecular mobility, etc. and solubility aspects have been discussed. In addition, preparation and characterization methods for binary solid dispersions based on the classification have also been discussed.  相似文献   

20.
Context: Manidipine (MDP) is generally used clinically as an antihypertensive agent; however, the bioavailability of orally administered MDP is limited due to their very low water solubility.

Objective: The objectives of this research were, therefore, to increase the solubility of MDP by the formation of ternary solid dispersions (tSD) with polyethylene glycol 4000 (PEG4000) and copovidone and to improve their stability.

Methods: Solid ternary phase diagram was constructed to find homogeneous solid dispersion region after melting and solidifying at low temperature with different quenching substances. The pulverized powder of solid dispersions was then determined, for their physicochemical properties, by differential scanning calorimetry, powder X-ray diffractometry, Fourier transform infrared (FTIR) spectroscopy and hot stage microscopy. The solubility and dissolution of MDP from the tSD were investigated. The physical stability of tSD was also determined under accelerated condition at 40?°C/75% relative humidity (RH) for 6 months.

Results and discussion: The results showed that MDP was molecularly dispersed in PEG4000 and copovidone when the tSD was created from homogeneous region of solid ternary phase diagram. FTIR results confirmed that strong hydrogen bonding was presented between MDP and copovidone, leading to a significant increase in the solubility and dissolution of MDP. After storage at accelerated condition (40?°C/75%RH) for 6 months, the tSD still showed a good appearance and high solubility.

Conclusion: The results of this study suggest that tSD prepared by melting has promising potential for oral administration and may be an efficacious approach for improving the therapeutic potential of MDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号