首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光纤激光器相干组束是目前实现高功率光纤激光系统的重要技术途径,利用本文的方法得到了双包层结构的双芯光子晶体光纤的相干合成输出,纤芯直径为2.05μm,空气孔间距Λ为2.07μm,空气孔直径d为1.44μm,测得了明显的相干条纹,光纤输出达30μW,这一成果为多芯光子晶体光纤激光器的发展开拓了新的方向.  相似文献   

2.
孙若愚  刘江  谭方舟  王璞 《激光技术》2013,37(4):417-420
为了得到高单脉冲能量的百皮秒激光脉冲,采用自制的被动锁模掺镱光纤激光器获得了100ps的激光脉冲输出,在此基础上采用两级全光纤结构主振荡功率放大器进行功率放大,其中预放大级采用7m纤芯的双包层掺镱光纤做增益介质,得到平均功率160mW的稳定脉冲输出;主放大级采用20m纤芯的双包层掺镱光纤做增益介质,在抽运功率逐步增加到35.37W时,输出功率达到了16.60W,相应的单脉冲能量为1.63J,峰值功率为16.61kW。此外,主放大级输出的激光通过自制的模场转换器与光子晶体光纤(纤芯4.6m)成功熔接,得到了2.85W的白光超连续光谱,光谱波长覆盖了600nm~1700nm的检测范围。结果表明,此激光可用于超连续谱光源的产生。  相似文献   

3.
采用基于半导体可饱和吸收镜(SESAM)的被动锁模方案,通过三级主振荡功率放大(MOPA)结构,构建了平均输出功率39.2 W的全光纤皮秒脉冲光纤激光器。输出激光脉冲宽度10.7 ps,重复频率68 MHz。利用该皮秒光纤激光器泵浦一段4.5 m长的国产光子晶体光纤(PCF),实现了平均功率20.1 W的全光纤化结构超连续谱(SC)光纤激光输出。光谱宽度超出所用光谱仪600~1700 nm 的观测范围,在观测范围内具有10 dB 的光谱平坦度。  相似文献   

4.
报道了一个高功率全光纤结构的中红外超连续谱激光源,该光源由1.55μm纳秒脉冲掺铒光纤激光器、包层抽运掺铥光纤放大器以及单模ZBLAN光纤组成。首先利用单模光纤将1.55μm纳秒脉冲激光频移至2.0μm波段,然后利用掺铥光纤放大器对其进行功率放大,最后利用ZBLAN光纤使掺铥光纤放大器输出的光谱进一步向中红外长波长方向扩展。当掺铥光纤放大器输出功率为3.95W时,ZBLAN光纤产生了2.2W的中红外超连续谱激光输出,相应的光谱范围为1.9~3.75μm,10dB光谱带宽大于1600nm。此外,通过增加掺铥光纤放大器的平均输出功率,中红外超连续谱的输出功率得到了进一步提高,当耦合进单模ZBLAN光纤的平均功率为21W时,中红外超连续谱的平均输出功率达到了16.2W,相应的光谱范围为1.9~3.5μm。  相似文献   

5.
<正>多芯光子晶体光纤便于与抽运激光器的大模场直径输出尾纤进行低损耗的熔接,能够把高功率的抽运激光耦合进光子晶体光纤中。同时,多芯光子晶体光纤的光场分布直径比单芯光子晶体光纤大,尽管激发非线性效应所需的激光抽运功率会有所提升,但是其激光损伤阈值也随之提升,即能够承受更高功率的抽运激光。因而,多芯光子晶体光纤非常适合用于构建全光纤化的高功率超连续谱光源系统。最近,国防科学技术大学采用高功率皮秒光纤激光抽运由光纤光缆制备技术国家重点实验室拉制  相似文献   

6.
多芯光子晶体光纤(MCPCF)是实现高功率超连续谱输出的一个重要研究方向,而如何解决多芯光子晶体光纤的低损耗熔接问题是实现全光纤化的关键。介绍了一种通过选择性空气孔塌缩技术实现七芯光子晶体光纤低损耗熔接的方法。数值模拟了处理前后七芯光子晶体光纤的模场特性以及对熔接损耗的影响。实验上对七芯光子晶体光纤进行了选择性空气孔塌缩处理,实现了和纤芯直径为15μm的双包层光纤的低损耗熔接,损耗值为0.22dB。  相似文献   

7.
报道了一个全光纤结构的高功率超连续谱激光光源。利用自行搭建的环形腔掺镱脉冲光纤激光器作为种子源,采用三级MOPA功率放大,得到了平均功率为62W,中心波长为1 065 nm,3 dB谱宽15 nm,重复频率为118 MHz的皮秒锁模脉冲输出,将其耦合进零色散波长为1 040 nm的光子晶体(PCF),最终得到平均功率为28 W,谱宽覆盖范围为600~1 700 nm的超连续谱激光输出,超连续谱的光-光转换效率为45%。实验解决了高功率下大芯径掺杂光纤与PCF的耦合效率低的问题。  相似文献   

8.
多芯光子晶体光纤(Photonic Crystal Fiber,PCF)具有设计更灵活、大模场面积、显著的非线性效应以及纤芯耦合等优势.介绍了国内高校对多芯光子晶体光纤研究的状况,主要包括高功率超连续谱、高功率光纤激光器和光器件三个研究方向.同时,讨论了多芯PCF的可调结构参数.  相似文献   

9.
为得到脉冲宽度为12ps、中心波长为1064nm的高功率超连续谱,提出了一种全光纤结构的超连续谱光源。将该光源作为抽运源,其输出功率在芯径为10mm的掺镱光纤中被放大至189 W。利用窄带滤波器、级间隔离器对脉冲信号进行放大,将放大后的脉冲信号注入长度为0.5 m的光子晶体光纤,产生了光谱范围为460~1700nm、输出功率为102.8 W的超连续谱。由于存在量子亏损和光谱传输损耗,当抽运功率从1.5 W提高至189 W时,超连续谱光-光斜率效率从90%降低至20%。  相似文献   

10.
张会  郭澎  常胜江  袁景和 《中国激光》2008,35(s1):134-138
提出了一种实现高非线性光子晶体光纤(PCF)的新方法,即在空芯光子晶体光纤(HC-PCF)的纤芯空气孔中填充高折射率、高非线性折射率的液态物质三氯甲烷、甲苯、二硫化碳等。利用全矢量有限元方法分析了这种液芯光子晶体光纤的模式分布及色散性质,分析得出其零色散波长可在800 nm左右调节,因此可使中心波长800 nm的钛宝石飞秒脉冲激光在这种光子晶体光纤的反常色散区传输,有利于超连续谱的产生。而且由于填充后光子晶体光纤具有较高的非线性系数,较小功率的脉冲激光就可在几毫米长的这种液芯光子晶体光纤中得到频谱范围大于1000 nm的超连续谱。  相似文献   

11.
报道了一种基于大模场光子晶体光纤放大的高峰值功率飞秒脉冲激光系统。该激光器系统采用光纤啁啾脉冲放大结构,种子源采用重复频率为40 MHz,脉冲宽度为500fs,输出功率为10mW的光纤激光器。利用体布拉格光栅(VBG)将脉冲展宽至500ps,经过多级放大并利用声光调制器降频为500kHz,然后采用大模场纤芯直径为40μm和85μm光子晶体光纤作为功率放大器,最后采用VBG压缩脉宽至767fs,得到平均功率为104 W的激光输出,其中心波长为1030nm,实现了峰值功率为0.271GW的近衍射极限激光功率输出。  相似文献   

12.
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。  相似文献   

13.
付圣贵  刘晓娟 《中国激光》2008,35(s2):19-21
利用GaAs晶体作为可饱和吸收体, 实现了掺镱光子晶体光纤激光器的被动调Q输出。实验用掺杂光子晶体光纤的芯径为21 μm, 数值孔径为0.04, 在实现了大模场面积的同时, 保证了激光器的单模运转, 从而得到高光束质量的激光输出。实验使用高功率半导体激光器作为抽运源, 采用自行研制的耦合系统将抽运光耦合进入光子晶体光纤的包层中。在激光器平均输出功率为5.8 W时, 实验得到的最短输出激光脉冲为80 ns, 重复频率为6.7 kHz。  相似文献   

14.
提出了利用倍频效应得到双波长抽运三零色散光子晶体光纤(PCF),产生近红外、中红外波段超连续谱。设计三零色散光子晶体光纤结构,采用分步傅里叶算法数值求解非线性薛定谔方程,模拟双波长抽运三零色散光子晶体光纤产生超连续谱的演化过程,分析了不同光纤长度和脉冲峰值功率对产生的超连续谱的影响。结果表明:当抽运激光脉冲中心波长分别为1μm和2μm、脉宽为100 fs、重复频率为200 k Hz,传输距离为10 cm、脉冲峰值功率为10 k W时,得到了谱宽为690~3150 nm的超连续谱,包含了近红外、中红外波段,光谱具有较好的连续性和平坦度。  相似文献   

15.
<正>超连续谱光源是一种特殊的光源,具有光谱宽、亮度高、空间相干性好等特点,在照明、通信、医学、军事等诸多领域具有广泛的应用前景。近几年,在突破了超短脉冲抽运源、抽运光耦合、普通光纤与光子晶体光纤低损耗熔接、高功率光纤激光器热管理等一系列关键技术难题之后,高功率超短脉冲光纤激光超连续谱研究进展显著。评价超连续谱指标参数除了功率、光谱宽度之外,还有一个参数——平坦度,平坦度从某种意义上说是描述超连续谱谱宽范  相似文献   

16.
正有源光子晶体光纤的芯径较大,主要用于实现高峰值功率(高能量)的脉冲放大输出。目前只有NKT Photonics公司可提供商品化的掺镱(Yb3+)有源光子晶体光纤,其最大芯径约为85μm。光子晶体光纤的制作主要受光纤预制棒中纤芯尺寸的限制。为实现百微米芯径的光子晶体光纤,预制棒中纤芯材料的直径须达到5mm,目前较难实现。中国科学院上海光学精密机械研究所立足于自身在材  相似文献   

17.
为了运用光子晶体光纤高非线性效应技术获得超宽光谱,设计了一种基于光子晶体光纤的超连续谱光源,通过对光子晶体光纤进行塌孔处理后再熔接的方式,将高峰值功率的窄线宽脉冲光注入高非线性光子晶体光纤,利用光纤非线性效应实现了光谱展宽.实验结果表明,该超连续谱光源实现了光谱范围440~2400 nm,输出光功率为276 mW.  相似文献   

18.
基于三级MOPA结构皮秒光纤激光器泵浦一段30 m长的国产光子晶体光纤(PCF),实现了全光纤化结构的超连续谱(SC)光源.在PCF与单模光纤(SMF)模场不匹配条件下,通过仔细调节熔接参数,在19 W入射功率条件下实现了最大功率为5 W的稳定超连续输出,系统光-光转换效率为24%.输出能量被很好地限制在纤芯,纤芯光斑...  相似文献   

19.
高功率掺杂光子晶体光纤激光器受到国内外研究者的广泛关注,应用于掺杂光子晶体光纤纤芯的掺杂玻璃制备成为自主拉制掺杂光子晶体光纤,进而实现高功率激光器的国产化基础问题之一。通过高温熔融工艺制备了Yb3+掺杂浓度相同、基质碱金属和碱土金属成分不同的硅酸盐玻璃,计算并分析了碱金属、碱土金属对玻璃样品的物理性质、光谱性质和激光特性的影响。结果表明:Yb3+-SiO2-Li2O-MgO-CaO-BaO-Al2O3多组分硅酸盐玻璃是优质的Yb3+掺杂光子晶体光纤的纤芯材料之一,为后期制备双包层Yb3+掺杂光子晶体光纤激光器的纤芯材料提了供理论和实验依据。  相似文献   

20.
基于非线性光子晶体光纤(PCF)的超连续谱技术由于在频谱学、超短脉冲激光技术、频率计量及光学相干层析(OCT)等领域中的应用价值在国际上引起了广泛的研究兴趣。最近,中国科学院西安光学精密机械研究所基于高功率全光纤皮秒脉冲放大器系统和高非线性光子晶体光纤,实验上获得了平  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号