首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用直线截点法计算各试样的奥氏体平均晶粒尺寸,得出82B高碳钢的奥氏体粗化温度为950℃,通过Thermo-calc热力学计算和能谱分析可知,晶粒粗化的主要原因是950℃时V、Ti、Nb碳氮化物数量的大大减少,即析出相粒子钉扎作用的减弱和消除.随着加热温度的升高和保温时间的延长,82B高碳钢奥氏体晶粒尺寸增大,其生长模型的公式为D=6.82×104t0079 exp(-8.04×104/RT).当加热温度为1000℃,保温时间为60~90 min时,82B原奥氏体晶粒尺寸小于67μm,晶粒细小均匀,且微合金元素V充分溶解在奥氏体中.  相似文献   

2.
通过金相观察研究了加热温度对2.25Cr-1Mo-0.25V钢奥氏体晶粒长大规律的影响.结果表明,在1000℃以下晶粒长大不明显,加热温度超过1000℃晶粒快速长大,在1300℃晶粒完全粗化,这种钢的晶粒粗化温度为1000℃.第二相粒子在较低加热温度下不溶解,这些未溶解的第二相质点可起到对晶界迁移的钉扎作用.随着加热温度的升高,部分第二相粒子开始溶解,使其阻碍奥氏体晶粒长大的钉扎作用减弱.第二相质点的尺寸和体积分数的比值决定了奥氏体晶粒的粗化程度,一旦发生解钉现象,奥氏体晶粒快速长大.  相似文献   

3.
研究了不同Nb含量的20CrMnTiH齿轮钢的奥氏体晶粒长大行为。采用光学显微镜和透射电镜分析了试验钢分别加热到950~1200℃奥氏体化保温1 h后的奥氏体晶粒变化和析出相情况。结果表明,随着Nb含量的增加,晶粒粗化温度不断提高。保温时间为1 h的情况下,每增加0.03%Nb,晶粒粗化温度提高50℃;超过晶粒粗化温度后,含Nb析出相的数量因溶解而大大降低,对晶界的钉扎作用消失,奥氏体晶粒长大。  相似文献   

4.
将38CrMoAl钢加热至1000~1200 ℃ 的奥氏体化温度,保温时间为0~300 s,研究了奥氏体化温度和保温时间对奥氏体晶粒长大行为的影响。试验结果表明,试验钢奥氏体平均晶粒尺寸随奥氏体化温度升高而增大,且晶粒长大速率随着温度的升高而增大。在同一奥氏体化温度下,奥氏体平均晶粒尺寸随保温时间的增加逐渐增大,且晶粒长大速率随时间的延长逐渐减小。根据试验钢奥氏体晶粒尺寸试验数据,建立了38CrMoAl钢奥氏体晶粒尺寸与奥氏体化温度和保温时间关系的Sellars模型,并验证了模型的准确性。  相似文献   

5.
分析了不同加热温度和保温时间下海洋平台用钢E690奥氏体晶粒的长大行为,同时研究了第二相粒子对奥氏体晶粒大小的影响。结果表明,奥氏体晶粒尺寸随着加热温度的升高而增加,在850~950℃之间奥氏体的晶粒尺寸增加属于正常的长大行为,而在950~1000℃之间出现了晶粒的异常长大,奥氏体平均晶粒尺寸几乎增加一倍。保温时间对奥氏体晶粒尺寸影响较小,且随着保温时间延长,晶粒增长不明显。钢中第二相粒子的尺寸、体积分数和分布状态对奥氏体晶粒长大起关键作用。在已有模型和试验数据的基础上,推导出能够描述奥氏体晶粒长大临界尺寸的模型,该模型很好地解释了试验钢奥氏体晶粒的长大行为。  相似文献   

6.
研究了60Mn3A13Ni2CrVNb调质型低密度钢的奥氏体晶粒长大行为,并分析了析出相对奥氏体晶粒长大行为的影响机理.结果 表明,在不同加热温度下(950~1250℃),随加热温度升高,实验钢的奥氏体晶粒逐渐增大,其中,1100℃以下加热时晶粒生长缓慢,1100℃及以上加热时,晶粒粗化明显,其晶粒粗化温度约为1100℃,此外存在1250℃加热时晶粒再次显著粗化现象.显微组织分析表明碳化铌是影响实验钢奥氏体晶粒长大行为的关键因素,且碳化铌的尺寸具有重要影响,实验钢中存在3种尺寸的碳化铌析出相,分别为小于50 nm、0.2~0.35 iμm、大于1μm.1100℃及以上加热时,尺寸小于50 nm的微小碳化铌析出相固溶,对奥氏体晶界的钉扎作用减弱,是1100℃及以上加热时晶粒粗化的主要原因;1250℃加热时,0.2~0.35 μm的碳化铌析出相固溶,导致1250℃加热时晶粒显著粗化;尺寸大于lμm的碳化铌析出相即使在1250℃保温12 h也难以溶解.  相似文献   

7.
在10501250 ℃温度范围内,实测了核压力容器用SA508-4N钢在不同保温时间下的奥氏体晶粒尺寸,研究了SA508-4N钢的奥氏体晶粒长大行为。结果表明,随加热温度及保温时间的增加,SA508-4N钢的奥氏体晶粒尺寸长大,温度由1050 ℃上升到1250 ℃时,奥氏体晶粒尺寸呈指数增长;得到了SA508-4N钢加热过程中,奥氏体平均晶粒尺寸与保温时间关系的Beck方程;建立了奥氏体晶粒尺寸与加热温度和保温时间之间的Sellars模型,并验证了模型的准确性。  相似文献   

8.
巩振全 《铸造技术》2014,(5):945-947
研究了82B高碳钢在不同加热温度和保温时间下奥氏体晶粒的生长规律。结果表明,在8001 100℃范围内,随着温度的增加,高碳钢奥氏体晶粒尺寸从18.2μm增加到116.3μm,其中950℃为其晶粒粗化温度。在950℃保温601 100℃范围内,随着温度的增加,高碳钢奥氏体晶粒尺寸从18.2μm增加到116.3μm,其中950℃为其晶粒粗化温度。在950℃保温6090 min后,可获得细小均一的奥氏体晶粒。最后,通过公式计算了高碳钢奥氏体晶粒的长大规律,与实验结果吻合。  相似文献   

9.
李志欣  王春旭  刘宪民  项金钟 《热加工工艺》2012,41(22):110-112,115
在不同温度下对Nb微合金化DT300钢进行奥氏体化保温,研究了该试验钢奥氏体平均晶粒尺寸和硬度随温度的变化规律,得到了Nb微合金化DT300钢的晶粒长大激活能,并且确定了该钢的晶粒粗化温度tGC.在相同温度、保温时间条件下,与不含Nb元素的DT300钢相比,Nb微合金DT300钢的晶粒尺寸明显小于不含Nb元素DT300钢,这主要是由于碳化物NbC在奥氏体晶界的弥散析出,对奥氏体晶界起到了钉扎作用,抑制了奥氏体晶粒的长大,并通过透射电镜观察了DT300钢中析出的NbC碳化物形貌.  相似文献   

10.
通过析出相粗化模型、Zener晶粒长大模型和试验验证,分析NbC析出相对17Cr2Ni2MoVNb钢在高温下晶粒尺寸的钉扎影响。模型与试验结果表明,NbC的粗化与回溶会降低对晶粒长大的钉扎作用。当等温温度低于1000℃时,NbC析出相对奥氏体晶粒的长大可以起到有效抑制,随着等温温度的升高,NbC析出相对奥氏体长大的抑制作用越来越弱。  相似文献   

11.
利用箱式炉将15Cr12CuSiMoMn钢加热至900~1100 ℃奥氏体化温度区间分别保温15~120 min,研究了不同奥氏体化温度和保温时间下原奥氏体晶粒的长大行为。结果表明,随着奥氏体化温度的升高,晶粒尺寸不断增大,长大行为呈幂函数规律;在1000 ℃以上加热,晶粒显著粗化;随着保温时间的延长,晶粒长大行为呈近似于抛物线匀减速规律;保温时间<60 min时,晶粒长大速率较快,当保温时间超过60 min时趋于平稳。基于Arrhenius公式,通过对试验数据进行线性回归拟合分析,建立了适合于本钢种的晶粒长大动力学模型,对比模型计算值与实际测量数据间的误差(2%<ΔXi<5%)验证了该模型的准确性与可靠性。  相似文献   

12.
研究了不同加热工艺参数下(加热温度1050~1300 ℃,保温时间0.25~24 h)12%Cr超超临界转子钢的奥氏体晶粒长大行为,并通过光学显微镜(OM)观察晶粒尺寸的变化规律,建立晶粒长大数学模型。结果表明:随着加热温度增加,晶粒尺寸逐渐增加,加热温度低于1150 ℃时,晶粒尺寸增加明显,而温度高于1150 ℃后,晶粒尺寸逐渐趋于稳定;随着保温时间的增加,晶粒尺寸逐渐增加,保温时间增加到3 h后,晶粒尺寸增加趋势放缓。采用非线性回归方法和Arrhenius晶粒长大模型,建立了该钢的晶粒长大数学模型。  相似文献   

13.
对中碳34CrNiMo合金钢在加热温度900~1200℃和保温时间0~360 s下的奥氏体晶粒演化行为进行了研究。结果表明,随着加热温度的升高和保温时间的延长,奥氏体晶粒尺寸呈现逐渐增大的趋势。基于晶粒长大的Sellars模型,通过线性回归方法建立34CrNiMo钢加热时奥氏体晶粒长大的数学模型。将晶粒长大模型预测结果与实验结果进行比较,符合良好,表明该模型能够较好地预测34CrNiMo钢奥氏体晶粒长大行为。  相似文献   

14.
利用光学显微镜(OM)、扫描电镜(SEM)、热力学软件Thermo-calc等研究了MG600锚杆钢奥氏体晶粒的长大规律。结果表明:加热温度对晶粒长大的影响比保温时间更显著,温度越高晶粒长大速率越快,但长大速率受界面曲率的影响而不断减小。热力学计算证明较低温度下V(C,N)的析出是抑制晶粒长大的主要因素。随着温度的升高,V(C,N)溶解以后,奥氏体晶粒进入平稳长大阶段。借助Sellars方程建立的MG600钢奥氏体晶粒长大模型与试验实测值吻合较好,能够较好地预测不同温度下的奥氏体晶粒尺寸。  相似文献   

15.
基于Matlab的300M钢奥氏体晶粒的长大规律   总被引:1,自引:0,他引:1  
研究了300 M钢在不同加热温度(850~1180℃)和保温时间(5~120 min)下的奥氏体晶粒长大规律。绘制了300 M钢奥氏体晶粒尺寸在不同加热温度和保温时间下的等值线图;利用Sellars晶粒长大模型,构建了300 M钢的奥氏体晶粒长大数学模型。结果表明,300 M钢在高温加热时具有较好的抗晶粒粗化能力,在1050℃左右开始粗化。奥氏体晶粒尺寸等值线图可定性和定量预测奥氏体晶粒长大规律;奥氏体晶粒长大数学模型可用两个数学公式来描述,即当加热温度为850℃≤T≤1050℃时,d6.14=texp(68.97-64945.88/T);当加热温度为1050℃≤T≤1180℃时,d7.39=texp(134.56-144504.52/T)。  相似文献   

16.
通过试验研究了20CrMnTi钢和20钢在不同保温温度(1000~1200℃)和不同保温时间(0~300 s)条件下的奥氏体晶粒长大行为,并基于试验结果建立了描述奥氏体晶粒长大行为的Sellars数学模型。通过对比两种钢的奥氏体晶粒长大模型计算值与试验值的平均相对误差(AARE)和相关系数(R),验证了模型的可靠性。试验与模拟结果表明,随着加热温度的升高,试验钢晶粒尺寸都有明显的增加;随着保温时间的延长,在前60 s晶粒尺寸增长快速,之后增速减缓。但在相同试验条件下,20CrMnTi钢的奥氏体晶粒尺寸都明显小于20钢,且没有出现晶粒异常长大现象,说明Ti元素的添加具有明显细化组织的作用。  相似文献   

17.
针对30Cr2Ni4MoV加热过程中的晶粒长大,在900℃~1250℃温度范围内实测了不同保温时间下的奥氏体晶粒尺寸。观察实验结果发现,该材料的晶粒长大在950℃~1100℃范围内存在两个温度拐点,即随着温度升高,奥氏体晶粒先是正常长大,然后在950℃以上温度时缓慢生长,二次相"钉扎"作用明显。当温度高于1050℃时,"钉扎"作用减弱,晶粒尺寸随温度升高显著增大。据此,在3个阶段内分别建立了奥氏体晶粒尺寸与温度及保温时间的关系模型。以此为依据,讨论了加热制度对30Cr2Ni4MoV大型钢锭晶粒长大及其均匀度的影响,并提出了一种新的加热制度。  相似文献   

18.
新型油井管钢33Mn2V的奥氏体晶粒长大规律   总被引:14,自引:0,他引:14  
系统研究了用于生产N80级热轧非调质无缝油井管的钢种33Mn2V在不同加热温度和不同保温时间下的奥氏体晶粒长大规律,结果表明,该钢在1100和1200℃保温时,奥氏体晶粒等温长大规律较好地服从抛物线型经验表达式,等温长大指数n均相当接近1/2,若等温时间为10 min,利用ASTM晶粒度级别等于5.00的临界判据定义的该钢实用奥氏体晶粒粗化温度位于1250℃左右;在900—1250℃温度范围内,该钢种奥氏体平均晶粒尺寸(D)与加热温度(T)的定量关系近似服从Arrhenius关系:D=1.12×10~4exp(-8.31×10~3/T),表明该钢在高温加热时具有较好的抗晶粒粗化能力,此结论对于将该钢种实际应用于N80级的热轧非调质无缝油井管工业化生产具有重要参考价值。  相似文献   

19.
通过金相试验方法测定42CrMo钢在890~930 ℃下保温10~240 min后的晶粒尺寸。结果表明,42CrMo钢在加热到试验温度890~930 ℃时已经完全奥氏体化,保温过程中的晶粒生长属于正常生长;加热温度对晶粒尺寸的影响较大,保温时间对晶粒尺寸的影响较小;随保温时间的延长晶粒生长缓慢,晶粒尺寸与保温时间满足指数小于1的函数关系。基于试验数据,通过线性回归得到晶粒长大的Beck模型参数,通过非线性回归得到Sellars和Anelli模型参数,3个模型的预测精度都较好,而Anelli模型的适用性要高于Beck模型和Sellars模型,故在预测42CrMo钢的奥氏体晶粒长大规律时宜使用Anelli模型。  相似文献   

20.
18Ni马氏体时效钢奥氏体晶粒长大规律研究   总被引:2,自引:0,他引:2  
对18Ni(1800 MPa级)马氏体时效超高强度钢的奥氏体晶粒长大规律进行研究.结果表明,随加热温度的升高和保温时间的延长,奥氏体晶粒尺寸逐渐增大,当温度高于1000℃时,晶粒迅速发生粗化,当温度低于1000℃时,晶粒尺寸随保温时间的延长变化不明显;晶粒平均尺寸与保温时间的关系符合Beck方程,且温度越高,晶粒生长指数越大;在850~1150℃,18Ni(1800MPa级)马氏体时效钢奥氏体晶粒长大激活能为223.106kJ/mol,其奥氏体晶粒平均尺寸与加热温度之间符合Arrhenius关系,并建立了该马氏体时效钢的奥氏体晶粒度长大数学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号