首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了提高重组大肠杆菌(Escherichia coli BL21DE3)(pET-28a(+)-bgl)发酵产β-1,3-1,4-葡聚糖酶的能力,研究了发酵培养基中各类碳源及氮源的影响,并通过响应面分析法优化培养基各组分的含量。结果表明,甘油为最适碳源,酵母粉及胰蛋白胨为氮源。优化的培养基组成是:yeast extract终浓度为20 g/L,胰蛋白胨12.5 g/L,甘油14.1 mL/L,KH2PO42.17 g/L,K2HPO42.74 g/L。三角瓶发酵产β-葡聚糖酶酶活(2 978.2 U/mL),与初始培养基(1 671.9 U/mL)相比,提高了1.78倍。研究结果表明,发酵培养基的优化对重组大肠杆菌发酵生产工业酶具有重要作用。  相似文献   

2.
从土壤样品中筛选得到一株高产β-1,3-1,4-葡聚糖酶的真菌,经鉴定为泡盛曲霉(Aspergillus awamori),命名为Aspergillus awamori CAU33。依次采用单因素试验和响应面分析法优化了其液体发酵产β-1,3-1,4-葡聚糖酶的条件,得到该菌株产酶的最适条件为:玉米芯质量浓度55 g/L、大豆蛋白胨质量浓度25 g/L、曲拉通X-114质量浓度23 g/L、初始pH 4.5、培养温度35℃、培养时间6 d。在此条件下β-1,3-1,4-葡聚糖酶活力达到8 447 U/m L,为优化前的17.6倍。  相似文献   

3.
以Klebsiella pneumoniaeDSM2026为出发菌株,通过紫外线诱变,选育得到能耐较高浓度生物柴油副产物甘油生产H2和1,3-丙二醇(1,3-PD)的菌株21株,命名为Kp1~Kp21。通过比较,Kp8菌株产量最高,1,3-PD和H2产量分别达到0.36 g/50 mL和0.99 mmol/50 mL,比出发菌株分别提高了3.5倍和4.2倍。对Kp8菌株发酵条件进行优化,得到最佳培养条件为pH 7.0,培养温度37℃,接种量10%(v/v),废甘油浓度为30 g/L。在该条件下H2产量为1.0 mmoL/50 mL,1,3-PD产量为7.5 g/L,甘油转化率为83.3%。  相似文献   

4.
研究发现一株高产β-1,3-1,4-葡聚糖酶的黄曲霉菌株,优化了其产酶条件并考察了粗酶潜在的工业应用价值。依次采用单因素法和响应面分析法优化该菌发酵产酶条件,得到其优化产酶条件:麸皮19 g/L、磷酸氢二铵30g/L、吐温-60 21 g/L、NaCl 5 g/L、MgSO_4·7H_2O 0. 5 g/L、KH_2PO_40. 75 g/L、培养基初始pH值8. 0、培养温度38℃、培养时间6d。在此条件下,黄曲霉能够分泌的最高胞外β-1, 3-1,4-葡聚糖酶酶活达155.9 U/mL。水解研究发现,该酶能高效降解大麦粉和燕麦粉中的β-葡聚糖,并直接生成葡萄糖。这些结果表明,黄曲霉能高效分泌β-1,3-1,4-葡聚糖酶,且该酶具有较强的工业应用前景。  相似文献   

5.
从土壤中筛选出一株高产β-1,3-1,4-葡聚糖酶的耐热真菌WPG-1,经过鉴定为拟青霉属(Paecilomyces sp.)。通过单因素试验优化拟青霉WPG-1固体发酵产β-1,3-1,4-葡聚糖酶的发酵条件。结果表明,该菌株产β-1,3-1,4-葡聚糖酶的最佳条件是:以燕麦粉为碳源,蛋白胨为氮源(氮素含量0.2%),初始水分含量70%,初始p H为自然,培养温度45℃为最佳产酶条件。在优化后的条件下培养5 d产β-1,3-1,4-葡聚糖酶水平高达1 324.49 U/g干基碳源。  相似文献   

6.
以近玫色锁掷孢酵母S3-1为发酵菌株,研究固态发酵的培养基成分和发酵条件对β-胡萝卜素产量的影响.通过设计单因素及响应面试验对其发酵工艺进行优化,优化后的最佳发酵条件为啤酒糟与豆粕质量比3:7、装料量22.80 g/250 mL、蛋白胨添加量0.5 g/L、接种量13.07 mL/100 g干基、初始pH 5.0、培养...  相似文献   

7.
废杂糖的资源化利用是高果糖浆生产行业迫切需要解决的问题。该研究首先通过高效液相、质谱和红外光谱分析,确定了杂糖成分为葡萄糖、果糖和聚合度为2~16的线性葡聚糖,包括葡萄糖480 g/L,果糖92 g/L,麦芽糖103.6 g/L,麦芽三糖36.8 g/L,总糖含量802.3 g/L。进一步使用2种常用的毕赤酵母宿主(P AOX1型毕赤酵母、P GAP型毕赤酵母)利用杂糖发酵生产内切β-1,3葡聚糖酶并与标准碳源(甘油和葡萄糖)作对比。结果表明,对于P AOX1型毕赤酵母,杂糖做碳源时细胞密度和酶活性与甘油相比均有所下降,最大生物量分别为59.1和82.0 g/L,最高酶活性分别为157.29和199.2 U/mL。对于P GAP型毕赤酵母,杂糖与葡萄糖的发酵效果相当,说明杂糖可以作为P GAP型毕赤酵母生产内切β-1,3葡聚糖酶的优质替代性碳源。  相似文献   

8.
高耐盐鲁氏酵母A菌株(耐24%盐)10 L发酵罐产β-1,3-葡聚糖酶的过程中,葡萄糖(YEPD)是鲁氏酵母A生长和产酶的最适碳源,其发酵效率显著高于甘油(YEPG)和乙醇(YEPE),而乙酸钠的可利用性较差。YEPD批培养生长效率(生物量)、最大酶活力以及酶产率分别比YEPG和YEPE批培养提高了1.89%和29.88%、114%和19.65%以及188%和33%。与YEPD批培养相比,15~23 h开始指数流加YEPF培养基,达到最大生物量的周期缩短12 h,最大生物量提高19.29%,而且β-1,3葡聚糖酶几乎以对数增长的方式提前6 h合成到最大酶活力(44.99 U/m L),酶产率提高了76.86%,达到2.14 U/(m L·h),实现了指数补料发酵的目的。研究结果确定了有效提高鲁氏酵母A生物量和β-1,3-葡聚糖酶产量的指数补料模型,为高耐盐鲁氏酵母菌剂和β-1,3-葡聚糖酶产品有效生产以及其在高活性酿造功能食品行业的应用打下了基础。  相似文献   

9.
以中心组合设计为基础利用响应面法,对克雷伯氏菌利用甘油生产1,3-丙二醇(1,3-PD)的培养条件进行优化,建立了以甘油、硫酸铵、pH值、发酵时间、和发酵温度对1,3-PD发酵生产的单个因素和交互影响的数学模型,得到发酵生产1,3-PD的最佳条件为:甘油49.9g/L;硫酸铵5.28g/L;pH值为7.19;培养时间84h;温度36.1℃。在此条件下,模型预测1,3-PD最大产量为19.03g/L。并在此条件下进行实际实验,1,3-PD的产量为18.33g/L,与模型预测接近。  相似文献   

10.
以甘油为底物,利用克雷伯氏菌发酵生产1,3-丙二醇的实验中,考察了初始甘油浓度、温度、pH、通气策略等发酵条件对1,3-PDO产量的影响。实验结果表明:积累1,3-PDO的适合条件为:甘油的初始浓度为40g/L、发酵温度37℃、pH7.0、0.5V/V·min的通气量,发酵30h,反应液中PDO的产量可达57.63g/L。  相似文献   

11.
本论文初步探讨了利用裂褶菌发酵体系所产的内切β-1,3-葡聚糖酶对发酵产生的裂褶多糖进行适度酶解,以获得分子量适中溶解度较好的裂褶多糖的可能性。以裂褶多糖产量和β-1,3-葡聚糖内切酶和总酶活为考察指标,采用刚果红琼脂染色法和摇瓶培养,从四株裂褶菌GIM5.42、GIM5.43、GIM5.44、Sc1中筛选出多糖产量和酶活都相对较高的菌株GIM5.43,多糖产量和酶活分别为2.29g/L与0.28 U/m L。在摇瓶中考察了氮源及其添加方式对裂褶菌菌体生长、裂褶多糖产率、β-1,3-葡聚糖酶的酶活及其影响规律。结果表明:菌体生长及其分泌胞外多糖和葡聚糖酶的最适酵母浸膏和氯化铵的添加时间和添加量是不同的。为了保证多糖产率,采用分批补加策略,初始酵母浸膏浓度1.00 g/L,发酵第6 d补加0.10 g/L酵母浸膏,多糖产量为4.16 g/L,比未优化提高了61.24%,总酶活为0.34 U/m L,提高了142.86%。  相似文献   

12.
报道了淀粉液化芽孢杆菌(Bacillusamyloliquefacien)BS5582菌株产β-葡聚糖酶和蛋白酶的液体发酵条件优化和酶学特性的研究结果。摇瓶水平下产β-葡聚糖酶的最佳培养基(g/L)为大麦粉40,玉米粉30,豆饼粉30,Na2HPO4·12H2O6,(NH4)2SO44,MgSO·47H2O1,CaCl20.8;产酶最佳起始pH7.0,装液量25mL/250mL。种子于37℃培养10h后,接种量8%,在37℃下发酵51.75h后β-葡聚糖酶酶活最高达到182.52U/mL,蛋白酶酶活达8062U/mL。β-葡聚糖酶的最佳反应pH6.5,最佳反应温度50℃。10mmol/L的Ca2 、Na 、NH4 、K 、Mg2 对β-葡聚糖酶活性有一定的激活作用;而相同浓度的Cu2 、Fe2 则表现出较强的抑制作用。  相似文献   

13.
低分子质量黄原胶具有抑菌、益生及抗氧化等多种生物活性,因此通过水解制备低分子质量黄原胶具有广阔应用前景。该研究将来源于绵羊瘤胃元基因组的内切β-1,4-葡聚糖酶首次在毕赤酵母中表达,其在pH 7.0和75℃下发挥最佳作用,并有较高的pH和温度稳定性。此后,建立了毕赤酵母和野油菜黄单胞菌的共培养体系并对发酵条件进行优化,其中野油菜黄单胞菌生成的黄原胶可以被毕赤酵母分泌的内切β-1,4-葡聚糖酶直接降解产生低分子质量黄原胶。摇瓶水平下,共培养体系中总糖最高为11.4 g/L,水解产物中重均分子质量为2 500 Da的低分子质量黄原胶达到93.79%。该研究为功能性低分子质量黄原胶的工业化生产提供了一个潜在的策略。  相似文献   

14.
采用响应面优化法对一株野生特基拉芽孢杆菌的发酵培养基进行优化,最终培养基各组分为:大麦粉68.4 g/L,玉米粉40 g/L,豆饼粉61.1 g/L,KH2PO41 g/L,MgSO4·7H2O 0.1 g/L,CaCl20.1 g/L。用优化培养基在37℃摇瓶发酵52 h,β-1,3-1,4-葡聚糖酶酶活达到191.96 U/mL,是优化前产酶水平的1.91倍。  相似文献   

15.
为提高ε-聚赖氨酸(ε-PL)合成能力,考察了柠檬酸对Streptomyces sp.M-Z18菌体生长和ε-PL合成的影响。研究发现,柠檬酸作为辅助能量物质,对ε-PL发酵过程影响显著。通过对柠檬酸添加时间、添加量和pH值的优化,确定了最佳柠檬酸添加方式,结合补料-分批发酵工艺,显著提高了ε-PL的产量。实验结果表明,在5L发酵罐中,维持pH为3.8,初始柠檬酸添加量为20 g/L时,分批发酵ε-PL的产量达到9.50 g/L,产率达到4.40 g/(L.d),较未添加柠檬酸发酵分别提高了46.4%和48.1%。采用添加柠檬酸的补料-分批发酵工艺,发酵168 h后ε-PL的产量达到22.89 g/L,是分批发酵的2.41倍。  相似文献   

16.
利用地衣芽孢杆菌(Bacillus licheniformics)HDYM-04在5L发酵罐中发酵生产β-甘露聚糖酶,并对其发酵条件、补料策略及用量进行优化。得到最优起始魔芋粉加入量、初始pH值和接种量分别为60g/L、8.0和6.7%;最佳发酵工艺为:温度37℃,搅拌速率300r/min,通气量3L/min,发酵48h。最后确定最佳补料策略为起始加入30g魔芋粉,对数生长后期再加入90g魔芋粉,最终酶活力可高达3913U/mL,较未优化前(2070U/mL)酶活力提高了89%。  相似文献   

17.
β-甘露聚糖酶高产菌株发酵条件优化   总被引:5,自引:1,他引:4  
从土壤中分离出1株产β-甘露聚糖酶的优良菌株Bacillus sp.QYW-1,具有发酵周期短且产酶活力高等特性,初始酶活力21.85 U/mL。在单因素实验对培养基及培养条件优化的基础上利用Plackett-Burman实验设计对影响产酶的重要因素进行筛选。实验发现,影响该菌株产酶的重要因素是魔芋粉、蛋白胨及硫酸镁。最陡爬坡实验和Box-Behnken实验得到响应面(RSM)优化的最佳培养基为:魔芋粉26 g/L,蛋白胨10 g/L,MgSO43.8 g/L,NaCl 10 g/L,KCl 6 g/L,NaNO36 g/L,K2HPO43 g/L,初始pH6.5。在此条件下菌株发酵产β-甘露聚糖酶酶活力为233.86 U/mL,与模型预测值相符,与单因素优化后的酶活力115.62 U/mL相比,提高了102%。  相似文献   

18.
α-酮戊二酸(α-KGA)是微生物三羧酸循环中重要的中间产物,在生命代谢中起到重要的作用,具有广泛的应用价值.对谷氨酸棒杆菌KGA-3发酵产α-KGA进行了研究,确立了补料分批发酵最佳条件,即种子培养基pH控制为7.0,摇瓶种子培养温度32℃,接种时间为12h,发酵培养基装液量25 mL/500 mL圆底三角瓶,按体积分数20%接种,最适初始糖浓度为90g/L,发酵周期为32 h.发酵采取初期补氨水,转型后添加0.75 moL/L NaOH溶液调节pH的工艺.在优化条件下,α-KGA产量和糖酸转化率分别为25.8 g/L和35.1%,比初始条件下分别提高了45.5%和11.5%.  相似文献   

19.
采用正交试验方法,进行了淀粉液化芽孢杆菌发酵产β-葡聚糖酶培养基的优化。结果表明,采用玉米粉30g/L,大麦粉40g/L,豆饼粉30g/L,Na2HPO4.12H2O 6g/L,(NH4)2SO4 4g/L,CaCl2 0.8g/L,MgSO4.7H2O1g/L组成的培养基发酵,β-葡聚糖酶活力达到128.55U/mL,比优化前提高了22.48%。在β-葡聚糖酶溶液中添加大分子亲水型多糖黄原胶、动物蛋白明胶、甘油、氯化钠可明显提高β-葡聚糖酶的热稳定性。将添加甘油120g/L、黄原胶5g/L复合稳定剂的葡聚糖酶溶液60℃处理2h,酶液的残余酶活比未经处理的酶活提高了55.3%。  相似文献   

20.
陈成  宁喜斌 《食品工业科技》2020,41(10):138-145
为快速高效地提高菌株Bacillus cereus B03的产酶能力,采用响应面法对Bacillus cereus B03产β-内酰胺酶的发酵培养基进行优化。首先通过单因素实验研究了不同碳源及浓度、不同氮源及浓度、不同金属离子及浓度、氯化钠、磷酸氢二钾以及温度、pH、接种量、装液量对菌株产酶活力的影响,然后设计Plackett-Burman试验筛选出影响产酶的3个显著性因素:温度、pH、接种量。在此基础上,最后设计Box-Behnken中心组合试验确定最优产酶发酵条件。结果表明,最佳发酵培养基成分为葡萄糖20 g/L、酵母浸粉20 g/L、NaCl 2 g/L、MgSO4·7H2O 0.2 g/L,K2HPO4·3H2O 4 g/L,最佳产酶发酵条件为发酵温度37 ℃,pH为7.3,接种量3%,装液量50 mL/250 mL。在此优化条件下,该菌株产β-内酰胺酶的酶活力为113278.7 U/mL,为优化之前酶活(88792.7 U/mL)的1.28倍。本研究为进一步工业化开发利用性状稳定且高产β-内酰胺酶的菌株提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号