首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粉末冶金技术制备金属多孔材料研究进展   总被引:1,自引:0,他引:1  
金属多孔材料既有金属的性质,又因为孔的存在,而具有一系列功能特性,诸如密度低、比表面积大、机械强度高、通透性好等,是一种性能优异的多功能工程材料,因而在工程中得到广泛的应用.本文阐述了粉末冶金技术制备金属多孔材料的最新研究进展,主要分析了生物金属多孔材料、形状记忆合金多孔材料、多孔钨电极、多孔不锈钢和多孔铜的制备及研究进展.  相似文献   

2.
纳米多孔金属材料已被广泛应用于催化剂、传感器、生物医疗等诸多领域,去合金化制备纳米多孔金属材料是一项新型、有效、经济的技术,具有很大的研究价值和应用潜力。概述了去合金化制备纳米多孔金属材料的原理、主要方法及其研究进展;重点阐述了去合金化制备纳米多孔钛合金的研究现状,并对去合金纳米多孔形成机制和物理模型进行了综述;简述了去合金化制备的纳米多孔材料在催化、传感以及生物材料等方面的应用;最后展望了纳米多孔金属材料的发展前景及其去合金化制备技术的研究趋势。  相似文献   

3.
激光成形制备生物医用钛合金材料研究进展   总被引:2,自引:0,他引:2  
激光成形制造技术是在快速原型技术的基础上结合激光加工技术发展起来的一项高新制造技术.它能够通过不同的加工方式调整结构及功能零件的性能,满足复杂致密或者多孔钛合金生物医用材料的成形需求,实现医用钛合金零件的个性化设计和制备,因此在医用钛合金人工肢体和植入体领域方面具有巨大的应用潜力.目前在制备生物医用钛合金材料领域研究较多的激光成形制造技术主要有激光立体成形和选择性激光烧结/熔化.本文综述了这两种激光成形制造在生物医用钛及钛合金制备方面的应用情况和研究现状,并指出了该领域未来的发展趋势.  相似文献   

4.
烧结金属多孔材料兼具金属材料和多孔材料的特性,具有机械强度高、可焊接、抗腐蚀、耐高温、易加工等优点,呈现出功能性强、应用面广、新品种不断涌现、使用空间不断拓展的现象.近年来,金属多孔材料的研究较为活跃,形成了多学科并存的制备技术体系,开发出了一系列新的材质、新型孔结构及物理化学性能的金属多孔材料,并且很快进入了实际应用.随着现代工业的进步,金属多孔材料正朝着高性能、多功能化方向发展,具体体现在孔结构的梯度化、孔径的微细化、材质的合金化复合化、制备与应用研究一体化等等,是新材料家族中特别具有生命力的一类可持续发展的材料.  相似文献   

5.
烧结金属多孔材料研究进展   总被引:2,自引:0,他引:2  
烧结金属多孔材料兼具金属材料和多孔材料的特性,具有机械强度高、可焊接、抗腐蚀、耐高温、易加工等优点,呈现出功能性强、应用面广、新品种不断涌现、使用空间不断拓展的现象.近年来,金属多孔材料的研究较为活跃,形成了多学科并存的制备技术体系,开发出了一系列新的材质、新型孔结构及物理化学性能的金属多孔材料,并且很快进入了实际应用.随着现代工业的进步,金属多孔材料正朝着高性能、多功能化方向发展,具体体现在孔结构的梯度化、孔径的微细化、材质的合金化复合化、制备与应用研究一体化等等,是新材料家族中特别具有生命力的一类可持续发展的材料.  相似文献   

6.
烧结法制备金属多孔材料   总被引:2,自引:0,他引:2  
烧结金属多孔材料兼具金属材料和多孔材料的特性,近年来受到广泛关注,在很多领域都得到应用.本文重点阐述烧结金属多孔材料的传统制备技术及特种制备技术.传统的制备技术主要分为固态烧结法、半固态烧结法、粉体熔化法.特种烧结技术包括激光选区烧结技术、放电等离子烧结技术等.  相似文献   

7.
镁合金作为生物医用植入材料的研究进展   总被引:1,自引:0,他引:1  
镁合金具有优良和独特的物理、化学和力学特点,其比强度和比刚度在金属材料中最好,同时又具有良好的生物相容性,甚至可以在生物体内自动进行降解,因此镁合金作为生物医用金属植入材料有明显的性能优势,在医用植入材料领域有着巨大的潜力和广阔的应用前景。本文针对医用植人材料特性的要求,对镁合金作为医用植入材料的可行性,和它与其他生物植入材料比较所具有的性能优势和特点进行了综述,并根据镁合金的性能特点,提出了开发医用植入镁合金材料的关键技术。  相似文献   

8.
多孔Ti继承了钛合金较高的比刚度、比强度等物理化学特性、优异的耐腐蚀性和生物相容性,其独特的孔隙结构又赋予其超低密度和大比表面积等特点,是结构功能一体化的人体替代材料,近年来在临床医学领域得到了非常广泛的应用。众多研究和应用表明,多孔Ti的性能和功能强烈依赖于不同方法制备多孔Ti的孔隙结构。表面活化技术可显著提高多孔Ti的表面活性,缩短植入人体后的愈合期。本文针对多孔Ti的结构和性能特点,介绍了多孔Ti的常见制备方法,对多孔Ti的表面改性、生物活性与骨诱导性及国内的研究现状进行了总结,展望了生物医用多孔Ti及钛合金的发展。  相似文献   

9.
钛及其合金因密度低、强度高、耐蚀性好、生物相容性好等特点被广泛应用于航空航天、海洋工程、石油化工、生物医疗、电子工程等领域,它是继钢铁、铝材之后非常重要的战略金属材料,被誉为“第三金属”、“太空金属”、“海洋金属”。多孔钛是一类兼具多孔材料和金属钛双重属性的结构功能一体化材料,也是现代高技术领域不可或缺的关键支撑材料。本文重点介绍了多孔钛的制备方法,包括粉末冶金法(无压成形法、压制成形法、空间占位法、浆料成形法和3D打印技术)和化学合成法(反应烧结法、燃烧合成法、钙热还原法、脱合金法),简要叙述了多孔钛在生物医疗、过滤与分离、电化学等领域的应用现状。孔结构是影响多孔钛应用性能的关键因素,需加强孔结构的精确控制及其与环境耦合作用机理研究;通过材料、力学、数学等多学科交叉融合,开发超轻质、超高强多孔钛的设计与制备技术。  相似文献   

10.
多孔钛是一种具有三维连通孔结构的金属材料,与致密生物金属材料相比,由于自身的开孔性和连通性使其弹性模量大幅度降低,从而能够与人体骨模量较好匹配,同时使体液自由流通,加之钛具有良好的生物相容性,因而被用作骨科移植材料。而如何控制多孔结构,获得性能优异的多孔钛基体是开展相关研究和应用的前提与基础。已开发出的多孔钛及其合金的制备方法有气体成泡法、有机海绵复制法、浆料发泡法、凝胶柱模法、冷冻铸造法、自蔓延高温合成法、放电等离子烧结法、添加造孔剂法、增材制造法、纤维合成法等。不同制备方法具有各自优点,但普遍存在制备成本较高或性能偏低等问题;另外,针对不同患者的实际骨质情况,需要不同力学性能及孔隙结构的骨移植材料。因此,在较大范围内对多孔钛骨移植材料结构和模量进行调节仍然需继续研究。目前,多孔钛骨移植材料已实现临床应用,国内机构也已经推出多孔钛椎体植入材料用于临床实践。未来,多孔钛作为骨移植材料的研究和临床应用仍有很大空间。  相似文献   

11.
医用多孔NiTi形状记忆合金的研究进展   总被引:1,自引:0,他引:1  
崔永鹏  何国求  刘晓山 《上海金属》2006,28(6):37-40,45
综述多孔NiTi形状记忆舍金的制备工艺、生物力学性能及生物相容性等方面的研究进展。国内外的研究表明,多孔NiTi合金具有优良的生物相容性和高的力学性能,其独特的孔隙结构可保证组织的长入和体液的传输,使植入物与人体骨组织的结合更加牢固可靠,多孔NiTi形状记忆舍金是一种具有良好应用前号的生物医用材料。  相似文献   

12.
《金属世界》2010,(3):23-24
医用材料,又称生物材料,是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗生物体内的病症,甚至替换生物机体中的组织、器官以增进其功能。目前用于临床的生物医用材料主要有金属材料、有机材料(主要指有机高分子材料)、无机非金属材料(主要指生物陶瓷、生物玻璃和碳素材料)以及其他复合材料等。与其他材料相比,  相似文献   

13.
多孔金属是一种内部含有大量孔隙的结构-功能一体化材料。随着服役环境的不断变化,人们对多孔金属的综合性能提出了越来越高的要求。与传统单级孔结构金属材料相比,多级孔金属由于具有两级甚至多级孔结构特征,展现出更加优异的综合性能,逐渐成为研究和关注的热点。本文简要综述了近些年国内外多级孔金属材料研究进展,其中多级孔金属制备工艺主要包括粉末烧结法、去合金化法以及增材制造法等;由于独特的孔结构,多级孔金属具有更好的过滤性能、毛细性能、催化性能以及力学性能,在过滤与分离、传热及能源等领域展现出诱人的应用前景。最后,对多级孔金属当前研究所面临的问题以及未来发展方向进行了讨论和展望。  相似文献   

14.
新型抗菌功能医用金属研究   总被引:1,自引:0,他引:1  
不锈钢、钛及钛合金等医用金属材料已广泛应用于骨科、齿科及心血管介入等医疗领域,生物可降解镁合金是正在研究发展的新型医用金属材料,具有诱人的临床应用前景。面对目前『临床上亟待解决的植入物引发的细菌感染问题,开展医用金属材料的抗菌功能研究意义重大,也是实现金属材料结构/功能一体化发展的新探索。简要介绍了作者近年来在不锈钢、钛合金、可降解镁基金属等医用金属材料的抗菌功能研究方面的主要进展,并展望了抗菌医用金属材料的临床应用前景。  相似文献   

15.
生物医用金属材料又称医用金属材料或外科用金属材料,当生物医用金属材料广泛被用于植入材料时,长期的实用性与安全性便成为了对医用金属材料的第一要求。生物医用金属材料在临床上已经取得了广泛的应用,同时也具备重要的深入研究价值。文章综述了生物医用金属材料的最新研究进展,详细介绍了钛基、钴基、镁基、锆基、锌基、铝合金以及不锈钢、钨、贵金属等生物医用金属材料的研究与应用进展,展望了未来研究的发展方向及临床的应用前景。文章指出虽然生物医用金属材料在过去的几十年中已得到较快的发展,但在临床上广泛使用的仍然是有限的几种,因此加大新型医用金属材料的研究并推动其发展显得尤为必要。  相似文献   

16.
金属纤维多孔材料既有金属的性质,又因内部存在着大量的孔隙而具有一系列的功能特性,是一类优良的结构功能一体化材料.本文主要分析了金属纤维多孔材料的制备方法,讨论了该材料的力学性能,并着重介绍了近几年该领域的最新研究进展.  相似文献   

17.
采用纳米钯黑做造孔剂并与海绵钯混合进行等离子脉冲放电烧结(SPS)的方法制备多孔钯块体材料。结果表明,纳米钯黑材料在500~550℃受热后会产生明显的收缩,具有良好的造孔效果。由于采用该方法不引入任何杂质,故可在550℃时制备出洁净度与孔隙率(87.88%)高、力学性能好的多孔钯块体材料。该方法也可为其它高洁净度多孔金属材料的制备提供有价值的借鉴。  相似文献   

18.
激光成形技术能够实现生物医用材料、人造肢体及医用植入体的个性化设计和生产,并且具有很少的工序环节和很短的加工周期,因此在生物医用材料的制备领域具有重大应用价值。目前适合于生物医用材料制备的激光成形技术主要有立体光刻(SL),分层实体制造(LOM),选择性激光烧结/熔化(SLS/SLM)和激光立体成形(LSF)技术。基于各种激光成形制备技术的原理和特点,综述了激光成形制备生物医用材料的研究进展和应用现状,认为中国在激光成形的各个单项技术领域同发达国家的差别并不大,但综合集成和产业化的差距却非常大。因此,形成包含完整产业链的产学研创新联盟是激光成形技术在中国生物医用材料领域科技发展和产业振兴的重要途径。先进的装备技术是任何一种技术充分发展和应用的必要基础,也是我国生物医用材料产业落后于发达国家的关键环节之一。因此,迫切需要建立适用于医用植入体制造的专用激光立体成形制备系统,形成具有市场化前景、自主知识产权的产品工程化技术和工艺流程,并建立相应的技术标准体系,以显著提升我国生物医用材料及医用植入体的技术水平,促进我国医用植入及组织工程领域的整体发展。  相似文献   

19.
医用多孔金属材料,特别是多孔钛及钛合金能够提供与人体骨组织相匹配的力学性能,并促进骨组织长人以提高其与骨的固定度,在人体硬组织修复与替换方面具有广泛的应用前景。重点围绕多孔钛及钛合金的制备方法及适用于其复杂孔隙结构的表面生物活化方法,综述了各种方法在多孔钛及钛合金上的应用现状。目前适用于多孔钛及钛合金制备的技术主要有粉末冶金法、钛纤维烧结法、自蔓延高温合成法、选区电子束熔化技术和选区激光熔化技术,适用于多孔钛及钛合金表面生物活化的技术主要有溶胶凝胶法、仿生矿化法、电化学沉积法和微弧氧化法。多孔钛及钛合金的力学相容性和表面生物活性需要同时满足临床要求,才能进一步扩大其在医学领域的应用范围。  相似文献   

20.
《稀有金属快报》2008,27(5):21-21
一种高孔隙率金属多孔载体材料的制备方法,涉及一种用于宇航与环保领域的特殊物质吸附贮存、催化剂载体的高孔隙率、小孔径的金属多孔体的制备方法。本发明采用金属粉末与造孔剂均匀混合形成的包覆粉末经压制成形、多阶段保温的烧结工艺,制备出多孔金属载体材料。通过添加造孔剂,减小粉末颗粒之间的接触面,最终达到高孔率、小孔径、高通孔率的目的,得到了性能优异的多孔金属载体材料,其孔率〉60%,孔径〈35μm,通孔率为95%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号