首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Lu IC  Lin JL  Lai SH  Chen CH 《Analytical chemistry》2011,83(21):8273-8277
This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.  相似文献   

2.
Drug therapy is often directed to specific organ and tissue compartments where the mode of action of the compound affects specifically targeted biological processes. However, the direct measurement of drug uptake in terms of a time kinetic and concentrations attained at the local sites has not been readily available as a clinical index for most drugs. A proof-of-principle study was conducted to test the utility of applying matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) to demonstrate the qualitative distribution pattern of a locally administered drug within tissue sites of targeted action. Here we have measured the occurrence of an inhaled bronchodilator, the muscarinic receptor antagonist ipratropium, within human bronchial biopsies obtained by fiber optic bronchoscopy shortly after dosing exposure. Cryo-preserved biopsy samples from five subjects being evaluated for airway obstruction or potential tumor development were prepared as thin frozen sections. Samples coated with a MALDI matrix were analyzed by a MALDI LTQ Orbitrap XL mass spectrometer at large (100 μm) and small (30 μm) raster sizes. Our results demonstrate that ipratropium is rapidly absorbed into the airway wall. Ipratropium parent ion (m/z 332.332) and daughter ions (m/z 166.2 and 290.2) were coincidently partitioned within submucosal spaces containing targeted airway smooth muscle in four out of five subjects. The signal intensity of ipratropium fragment ions provided estimates that local drug concentrations between 3 and 80 nM were achieved within the airway wall. To our knowledge, this is the first reported study in applying MALDI-MSI to demonstrate the localization of a drug administered at therapeutic levels. The study highlights the potential benefit of MALDI-MSI to provide important measurements of drug efficacy in clinical settings.  相似文献   

3.
We report the design and first applications of a tandem mass spectrometer (a quadrupole time-of-flight mass spectrometer) optimized for the transmission and analysis of large macromolecular assemblies. Careful control of the pressure gradient in the different pumping stages of the instrument has been found to be essential for the detection of macromolecular particles. Such assemblies are, however, difficult to analyze by tandem-MS approaches, because they give rise to signals above m/z 3,000-4,000, the limit for commercial quadrupoles. By reducing the frequency of the quadrupole to 300 kHz and using it as a narrow-band mass filter, we show that it is possible to isolate ions from a single peak at m/z 22,000 in a window as narrow as 22 m/z units. Using cesium iodide cluster signals, we show that the mass range in the time-of-flight (TOF) analyzer extends beyond m/z 90,000, in theory to more than m/z 150,000. We also demonstrate that the resolution of the instrument is greater than 3,000 at m/z 44,500. Tandem-MS capabilities are illustrated by separating components from heterooligomeric assemblies formed between tetrameric transthyretin, thyroxine, retinol-binding protein, and retinol. Isolation of a single charge state at m/z 5,340 in the quadrupole and subsequent collision-induced dissociation (CID) in the gas-filled collision cell leads to the formation of ions from individual subunits and subcomplexes, identified by their mass and charge in the TOF analyzer.  相似文献   

4.
Discussed here is an analytical method for profiling lipids and phospholipids directly from mammalian tissues excised from Mus musculus (house mouse). Biochemical analysis was accomplished through the use of matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry, where whole tissue sections of mouse brain, heart, and liver were investigated. Lipid and phospholipid ions create complex MALDI mass spectra containing multiple ions with different m/z values corresponding to the same fundamental chemical species. When a computational sorting approach is used to group these ions, the standard deviation for observed relative chemical abundance can be reduced to 6.02%. Relative standard deviations of 10% are commonly accepted for standard chromatographic phospholipid analyses. Average mass measurement accuracy for 232 spectra representing three tissue types from 12 specimens was calculated to be 0.0053 Da. Further it is observed, that the data and the analysis between all the animals have near-identical phospholipid contents in their brain, heart, and liver tissues, respectively. In addition to the need to accurately measure relative abundances of phospholipid species, it is essential to have adequate mass resolution for complete and accurate overall analysis. It is reasonable to make mass composition assignments with spectral resolving power greater than 8000. However, results from the present study reveal 14 instances (C12 carbon isotope) of multiple m/z ions having the same nominal value that require greater resolution in order that overlap will not occur. Spectra measured here have an average resolving power of 12 000. It is established that high mass resolution and mass accuracy coupled with MALDI ionization provide for rapid and accurate phospholipid analysis of mammalian tissue sections.  相似文献   

5.
Hsu YF  Lin JL  Lai SH  Chu ML  Wang YS  Chen CH 《Analytical chemistry》2012,84(13):5765-5769
Presented herein are the development of macromolecular ion accelerator (MIA) and the results obtained by MIA. This new instrument utilizes a consecutive series of planar electrodes for the purpose of facilitating stepwise acceleration. Matrix-assisted laser desorption/ionization (MALDI) is employed to generate singly charged macromolecular ions. A regular Z-gap microchannel plate (MCP) detector is mounted at the end of the accelerator to record the ion signals. In this work, we demonstrated the detection of ions with the mass-to-charge (m/z) ratio reaching 30,000,000. Moreover, we showed that singly charged biomolecular ions can be accelerated with the voltage approaching 1 MV, offering the evidence that macromolecular ions can possess much higher kinetic energy than ever before.  相似文献   

6.
Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.  相似文献   

7.
Cai Y  Peng WP  Chang HC 《Analytical chemistry》2003,75(8):1805-1811
Mass spectra of fluorescently labeled polystyrene nanoparticles have been obtained using a combined technique of matrix-assisted laser desorption/ionization (MALDI), laser-induced fluorescence (LIF), and a dual quadrupole ion trap mass spectrometer. The spectrometer is designed in such a way that the first trap serves as a trapping and mass-analyzing device, while the second trap serves to capture and concentrate the ions ejected from the first trap for fluorescence detection. An enhancement in the LIF signal by more than 3 orders of magnitude is achieved with the help of the second trap, making mass/charge (m/z) analysis of the nanoparticles possible. Additional unique features of this mass spectrometer include that frequency scan (0.5-50 kHz) at a constant voltage (200 V), instead of voltage scan at a constant frequency, is implemented to widen the spectral analysis range of the instrument. The implementation has allowed the spectrometer to operate at relatively high buffer gas pressures (50 mTorr), crucial for effective trapping of the nanometer-sized particles generated by MALDI. We present in this report the first mass spectra of fluorescently labeled nanoparticles with a size of 27 nm using this new mass spectrometric approach. The utility of this method in the study of biological macromolecules or particles is demonstrated with dye-labeled IgG.  相似文献   

8.
Characteristic ions in the MALDI TOF mass spectra from bacterial cells have been associated with four known proteins. The proteins, observed both from cells and in filtered cellular suspensions, were isolated by HPLC and identified on the basis of their mass spectra and their partial amino acid sequence, determined using the Edman method (10-15 residues). The acid resistance proteins HdeA and HdeB give rise to ions near m/z 9735 and 9060 in MALDI TOF mass spectra from cells and from extracts of both Escherichia coli 1090 and Shigella flexneri PHS-1059. However, the proteins associated with proteolytic cleavage by the peptidase Lep, rather than the precursor proteins, were observed, both using cells and from cellular extracts. A cold-shock protein, CspA, was associated with the ion near m/z 7643 from Pseudomonas aeruginosa. Similarly, a cold-acclimation protein, CapB, was identified as the source of the ion near m/z 7684 in P. putida. This last protein was homologous with a known CapB from P. fragi. While these experiments involved the detection of known or homologous proteins from typical bacteria, this same approach could also be applied to the detection of unique proteins or biomarker proteins associated with other bacteria of public health significance.  相似文献   

9.
Z Zhang  H Ye  J Wang  L Hui  L Li 《Analytical chemistry》2012,84(18):7684-7691
Herein, we report a pressure-assisted capillary electrophoresis-mass spectrometric imaging (PACE-MSI) platform for peptide analysis. This new platform has addressed the sample diffusion and peak splitting problems that appeared in our previous groove design, and it enables homogeneous deposition of the CE trace for high-throughput MALDI imaging. In the coupling of CE to MSI, individual peaks (m/z) can be visualized as discrete colored image regions and extracted from the MS imaging data, thus eliminating issues with peak overlapping and reducing reliance on an ultrahigh mass resolution mass spectrometer. Through a PACE separation, 46 tryptic peptides from bovine serum albumin and 150 putative neuropeptides from the pericardial organs of a model organism blue crab Callinectes sapidus were detected from the MALDI MS imaging traces, enabling a 4- to 6-fold increase of peptide coverage as compared with direct MALDI MS analysis. For the first time, quantitation with high accuracy was obtained using PACE-MSI for both digested tryptic peptides and endogenous neuropeptides from complex biological samples in combination with isotopic formaldehyde labeling. Although MSI is typically employed in tissue imaging, we show in this report that it offers a unique tool for quantitative analysis of complex trace-level analytes with CE separation. These results demonstrate a great potential of the PACE-MSI platform for enhanced quantitative proteomics and neuropeptidomics.  相似文献   

10.
An automated screening method is presented that uses MALDI in-source decay (MALDI-ISD) of disulfide bonds for identification of disulfide-linked peptides in MALDI mass spectra. Peptides released by ISD of a disulfide bond can be detected at an m/z ratio that corresponds to the singly protonated peptide with a reduced cysteine residue. Therefore, screening of peak lists for signal patterns that fulfill the equation, m/z (peak A) + m/z (peak B) - m/z (H2 + H+) = m/z (peak C), facilitated identification of putative ISD fragments of disulfide-linked peptides (peaks A and B) and their precursors (peak C). Signals (peak C) from putatively disulfide-linked peptides were subjected to LIFT-TOF/TOF-MS to confirm the existence of a disulfide bond. Using this method, we identified all 4 disulfide bonds in RNAseA and 8 two-disulfide clusters comprising 16 out of the 17 disulfide bonds in BSA. The presented screening method accelerated the identification of disulfide bonds in RNAseA and BSA, because the number of MS/MS spectra to be acquired was reduced by 1 order of magnitude. Less than 5% of the signals selected for LIFT-TOF/TOF-MS did not correspond to disulfide-linked peptides. Furthermore, the number of possible assignments for disulfide-linked peptides was reduced by 2-3 orders of magnitude, because knowledge of the mechanism of disulfide bond fragmentation by ISD permitted use of stricter rules for the interpretation of mass spectra. Therefore, interpretation of MS/ MS spectra of disulfide-linked peptides was considerably simplified in comparison to conventional approaches.  相似文献   

11.
A multiple ionization mass spectrometry strategy is presented based on the analysis of human serum extracts. Chromatographic separation was interfaced inline with the atmospheric pressure ionization techniques electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in both positive (+) and negative (-) ionization modes. Furthermore, surface-based matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on silicon (DIOS) mass spectrometry were also integrated with the separation through fraction collection and offline mass spectrometry. Processing of raw data using the XCMS software resulted in time-aligned ion features, which are defined as a unique m/z at a unique retention time. The ion feature lists obtained through LC-MS with ESI and APCI interfaces in both +/- ionization modes were compared, and unique ion tables were generated. Nonredundant, unique ion features, were defined as mass numbers for which no mass numbers corresponding to [M + H](+), [M - H](-), or [M + Na](+) were observed in the other ionization methods at the same retention time. Analysis of the extracted serum using ESI for both (+) and (-) ions resulted in >90% additional unique ions being detected in the (-) ESI mode. Complementing the ESI analysis with APCI resulted in an additional approximately 20% increase in unique ions. Finally, ESI/APCI ionization was combined with fraction collection and offline-MALDI and DIOS mass spectrometry. The parts of the total ion current chromatograms in the LC-MS acquired data corresponding to collected fractions were summed, and m/z lists were compiled and compared to the m/z lists obtained from the DIOS/MALDI spectra. It was observed that, for each fraction, DIOS accounted for approximately 50% of the unique ions detected. These results suggest that true global metabolomics will require multiple ionization technologies to address the inherent metabolite diversity and therefore the complexity in and of metabolomics studies.  相似文献   

12.
Lee J  Reilly PT 《Analytical chemistry》2011,83(15):5831-5833
In this work, we have examined the reason for the deterioration of resolution and mass accuracy of time-of-flight mass analyzers with increasing mass after the expansion-induced kinetic energy has been eliminated by collisional cooling in an ion guide. Theoretically, removing the expansion-induced kinetic energy by collisional cooling permits the ions to travel along the ion guide axes without significant deviation so that they can be injected into the analyzer in a well-collimated ion beam with well-defined kinetic energy. If the ions can be injected into an orthogonal acceleration time-of-flight mass analyzer (oa-TOF) in this manner, high-resolution mass analysis can be obtained regardless of mass or m/z. Unfortunately, high resolution did not result. It is our contention that the effusive expansion out of the first ion guide yields dispersive axial ejection that reduces TOF resolving power with increasing mass not m/z.  相似文献   

13.
A hybrid quadrupole orthogonal time-of-flight mass spectrometer optimized for matrix-assisted laser desorption ionization (MALDI) and electrospray ionization has been equipped with a C 60 cluster ion source. This configuration is shown to exhibit a number of characteristics that improve the performance of traditional time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments for the analysis of complex organic materials and, potentially, for chemical imaging. Specifically, the primary ion beam is operated as a continuous rather than a pulsed beam, resulting in up to 4 orders of magnitude greater ion fluence on the target. The secondary ions are extracted at very low voltage into 8 mTorr of N 2 gas introduced for collisional focusing and cooling purposes. This extraction configuration is shown to yield secondary ions that rapidly lose memory of the mechanism of their birth, yielding tandem mass spectra that are identical for SIMS and MALDI. With implementation of ion trapping, the extraction efficiency is shown to be equivalent to that found in traditional TOF-SIMS machines. Examples are given, for a variety of substrates that illustrate mass resolution of 12,000-15,600 with a mass range for inorganic compounds to m/ z 40,000. Preliminary chemical mapping experiments show that with added sensitivity, imaging in the MS/MS mode of operation is straightforward. In general, the combination of MALDI and SIMS is shown to add capabilities to each technique, providing a robust platform for TOF-SIMS experiments that already exists in a large number of laboratories.  相似文献   

14.
Recently, it has been demonstrated that bacteria can be characterized using whole cells and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). However, identification of specific bacterial proteins usually requires analysis of cellular fractions or purified extracts. Here, the first application of Fourier transform mass spectrometry (FTMS) to analysis of bacterial proteins directly from whole cells is reported. It is shown that accurate mass MALDI-FTMS can be used to characterize specific ribosomal proteins directly from Escherichia coli cells. High-accuracy mass measurements and high-resolution isotope profile data confirm posttranslational modifications proposed previously on the basis of low-resolution mass measurements. Seven ribosomal proteins from E. coli whole cells were observed with errors of less than 27 ppm. This was accomplished directly from whole cells without fractionation, concentration, or overt overexpression of characteristic cellular proteins. MALDI-FTMS also provided information regarding E. coli lipids in the low-mass region. Although ions with m/z values below 1000 have been observed by FTMS of whole cells, this represents the first report of detection of ions in the 5000 to 10,000 m/z range by MALDI-FTMS using whole cells.  相似文献   

15.
We describe a strategy, which we term hypothesis-driven multiple-stage mass spectrometry (HMS-MS), for the sensitive detection and identification of phosphopeptides derived from enzymatic digests of phosphoproteins. In this strategy, we postulate that any or all of the potential sites of phosphorylation in a given protein may be phosphorylated. Using this assumption, we calculate the m/z values of all the corresponding singly charged phosphopeptide ions that could, in theory, be produced by the enzyme employed for proteolysis. We test ions at these m/z values for the presence of phosphoserine or phosphothreonine residues using tandem mass spectrometry (MS(2)) in a vacuum MALDI ion trap mass spectrometer, where the neutral loss of the elements of H(3)PO(4) (98 Da) provides a sensitive assay for the presence of phosphopeptides. Subsequent MS(3) analysis of the (M + H - 98)(+) peaks allows us to confirm or reject the hypotheses that the putative phosphopeptides are present in the sample. HMS-MS was successfully applied to the detection and identification of phosphopeptides from substrates of the Saccharomyces cerevisiae cyclin-dependent kinase (Cdk) Cdc28, phosphorylated in vitro (Ipl1) and in vivo (Orc6), basing hypothesis formation on the minimal Cdk consensus phosphorylation motif Ser/Thr-Pro. The method was also used to find in vitro phosphopeptides from a domain of the Drosophila melanogaster protein PERIOD, hypothesizing possible phosphorylations of all Ser/Thr residues without assuming a consensus motif. Our results demonstrate that HMS-MS is a sensitive, highly specific tool for systematically surveying proteins for Ser/Thr phosphorylation, and represents a significant step toward our goal of comprehensive phosphorylation mapping.  相似文献   

16.
Intense intact molecular ion signals have been obtained from phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidyiinositol using matrix-enhanced secondary ion mass spectrometry (ME-SIMS). It was found that the high-mass (m/z >500) regions of the ME-SIMS spectra closely resembled those obtained using matrix-assisted laser desorption/ionization (MALDI). Using high spatial resolution SIMS, a detailed investigation of dried-droplet samples was performed. Based on the detected Na+ and 2,5-DHB matrix signal intensities, different crystal types were distinguished, in addition to different sizes of crystals. Spatially mapping the pseudomolecular and fragment ions of the phospholipids revealed that the nature of the pseudomolecular ions formed, as well as the ratio of intact molecular to fragment ion, was dependent on the type and surface composition of the crystal. The observed chemical bias effects due to crystal heterogeneity and the resulting variation in desorption/ionization efficiency will complicate the interpretation of data obtained from matrix-assisted mass spectrometric (imaging) techniques and is an important factor in the "hot spot" phenomenon frequently encountered in MALDI experiments. In this respect, imaging SIMS was found to be a versatile tool to investigate the effects of the local physicochemical conditions on the detected molecular species.  相似文献   

17.
Application of mass spectrometry imaging (MS imaging) analysis to single cells was so far restricted either by spatial resolution in the case of matrix-assisted laser desorption/ionization (MALDI) or by mass resolution/mass range in the case of secondary ion mass spectrometry (SIMS). In this study we demonstrate for the first time the combination of high spatial resolution (7 μm pixel), high mass accuracy (<3 ppm rms), and high mass resolution (R = 100?000 at m/z = 200) in the same MS imaging measurement of single cells. HeLa cells were grown directly on indium tin oxide (ITO) coated glass slides. A dedicated sample preparation protocol was developed including fixation with glutaraldehyde and matrix coating with a pneumatic spraying device. Mass spectrometry imaging measurements with 7 μm pixel size were performed with a high resolution atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) imaging source attached to an Exactive Orbitrap mass spectrometer. Selected ion images were generated with a bin width of Δm/z = ±0.005. Selected ion images and optical fluorescence images of HeLa cells showed excellent correlation. Examples demonstrate that a lower mass resolution and a lower spatial resolution would result in a significant loss of information. High mass accuracy measurements of better than 3 ppm (root-mean-square) under imaging conditions provide confident identification of imaged compounds. Numerous compounds including small metabolites such as adenine, guanine, and cholesterol as well as different lipid classes such as phosphatidylcholine, sphingomyelin, diglycerides, and triglycerides were detected and identified based on a mass spectrum acquired from an individual spot of 7 μm in diameter. These measurements provide molecularly specific images of larger metabolites (phospholipids) in native single cells. The developed method can be used for a wide range of detailed investigations of metabolic changes in single cells.  相似文献   

18.
A novel image charge detection mass spectrometer (CDMS) with improved sensitivity and mass accuracy is described. The improved detector design and method of data analysis allow us to measure a reliable mass for a single macroion that is an order of magnitude smaller than previously achieved with CDMS. The apparatus employs an image charge detector array consisting of 22 detectors. The detectors are divided into two groups that can be floated at different potentials. The signals from the detector array are analyzed using a correlation approach to yield the velocities in the two groups of detectors and the charge. These quantities, together with the voltage difference between the two groups of detectors, provide a value for the mass. The mass, m/z, and charge distributions recorded for 300 kDa poly(ethylene oxide) (PEG) are presented. The mass distribution shows a peak at around 300 kDa with a width close to that expected from the polymer size distribution. In addition, there are broad peaks in the mass distribution at around 100 and 500 MDa. The 300 kDa ions have m/z ratios of ~2 kDa/e, and the 100 and 500 MDa ions have m/z ratios of ~40 kDa/e. The 100 and 500 MDa ions probably result from PEG aggregates that are either present in solution or the residue of large electrospray droplets.  相似文献   

19.
The kinetics and product distributions of the reactions of dimethyl disulfide (DMDS) have been investigated with a group of chemical background ions commonly observed in atmospheric pressure ionization (API) mass spectrometry (MS) in order to assess the value of this molecule in filtering (or "scrubbing") these ions by changing their mass/charge (m/z) ratio. The measurements were taken with a novel electrospray ionization/selected ion flow tube/QqQ tandem mass spectrometer. The background ions studied include those with m/z 42 (protonated acetonitrile, ACN), 83 (protonated ACN dimer), 99 (protonated phosphoric acid), 117 (water cluster of m/z 99), 131 (methanol cluster of m/z 99), 149 (protonated phthalic anhydride, formed from the phthalates), and 327 (protonated triphenyl phosphate). In addition, reactions of DMDS have been studied with two model analytes--protonated caffeine and doubly protonated bradykinin--in order to assess the selectivity of DMDS reactivity. All the measurements were taken at 295 +/- 2 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. DMDS was observed to react efficiently with m/z 42 (ACNH+), 149 (from phthalates), and 99 (protonated phosphoric acid), with k/kc=0.91, 0.47, and 0.38, respectively. Only proton transfer was observed with ACNH+, followed by the secondary reaction of [DMDSH]+ with DMDS to yield [CH3S-S(CH3)-SCH3]+. Ligation of DMDS was the dominant primary channel observed for the reaction of the m/z 149 background ion; however, some proton transfer also was observed. Both of these primary product ions react further with DMDS to yield [CH3S-S(CH3)-SCH3]+, the structure of which we have determined computationally using DFT calculations. Only the sequential ligation with two DMDS molecules was observed for the reaction of the m/z 99 ion. Reactions of DMDS with m/z 117 [H3PO4 + H + H2O]+ and m/z 131 [H3PO4 + H + MeOH]+ were observed to proceed with k/kc=0.71 and 0.058, respectively. Ligand substitution of DMDS for H2O predominated ( approximately 94%) over DMDS ligation ( approximately 6%) in the reaction with m/z 117, while only DMDS ligation was observed for the reaction of m/z 131 with DMDS. In contrast, the reactions of DMDS with ions of m/z 83 (protonated dimer of ACN) and 327 (protonated triphenyl phosphate) were extremely inefficient, with k/kc=0.0042 and 0.0079, respectively. The higher reactivity of DMDS toward ACNH+ (m/z 42) compared to (ACN)2H+ (m/z 83) is attributed to the lower proton affinity of the unsolvated ACN. The reactivity of DMDS toward the two model analyte ions studied-protonated caffeine and doubly protonated bradykinin-was negligible, with k/kc=0.0073 and 0.010, for the respective reactions. These results suggest that, under appropriate reagent pressure conditions, DMDS can be an appropriate reagent for chemically filtering out many common API-MS background ions, without significantly affecting the observed intensity of analyte peaks.  相似文献   

20.
Brevetoxins, the toxic components of "red tide" algae, all share one of two robust polycyclic ether backbone structures, but they are distinguished by differing side-chain substituents. Electrospray ionization mass spectrometry analyses of brevetoxins have shown that the polyether structure invariably has a very high affinity for sodium cations that results in the production of abundant (M + Na)+ ions even when sodium cations are only present as impurities. Because the ionic charge tends to remain localized on the sodium atom and because at least two bonds must be broken in order to produce polycyclic backbone fragmentation, it is extremely difficult to obtain abundant product ions (other than Na+) from (M + Na)+ brevetoxin precursor ions in low-energy collision-induced dissociation (CID) MS/MS experiments. This report establishes that acid additives (oxalic acid, trifluoroacetic acid, and particularly hydrochloric acid) in aqueous methanol solutions can promote high yields of protonated brevetoxin molecules (MH+ ions) for Btx-1, -2, and -9 brevetoxins. Most importantly, unlike their (M + Na)+ counterparts, MH+ precursor ions offer readily detectable product ions in CID MS/MS experiments, even under low-energy collisions. This direct structural characterization approach has provided decomposition information from brevetoxins that was previously inaccessible, including the identification of diagnostic product ions for "type A" brevetoxins (m/z 611) and "type B" brevetoxins (m/z 779, 473, 179) and characteristic ions for Btx-1 (m/z 221, 139), Btx-2 (m/z 153), and Btx-9 (m/z 157, 85). Precursor ion scans and constant neutral loss scans are proposed to enable screening of individual type A or type B brevetoxins present in naturally occurring mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号