首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文从CFRC材料的配方设计、性能测试及试体断裂面形貌等几个方面较为系统地研究了骨料品种及掺量、外加剂品种及接量、水灰比、碳纤维品种及掺量和长度对CFRC复合材料的物理及力学性能的影响,确定了制各CFRC材料所采用的适宜参数.  相似文献   

2.
超声作用对短切碳纤维在水溶液中分散性的影响   总被引:1,自引:0,他引:1  
利用超声波振动对短切碳纤维进行分散。研究了超声振动功率、时间及分散剂质量分数对短切碳纤维在水溶液中分散性的影响。结果表明,超声振动和羟丙基甲基纤维素(HPMC)分散剂的添加能显著改善短切碳纤维的分散性;在一定范围内,短切碳纤维分散率随着超声波振动功率和作用时间先增加后趋于饱和;HPMC在水溶液中的质量分数为0.13%时分散性较好,超声振动功率为800 W,振动7 min时短切碳纤维在水溶液中可达到较好的分散效果。  相似文献   

3.
集束效应对CFRC复合材料界面及力学性能的影响   总被引:3,自引:0,他引:3  
碳纤维的分散均匀程度直接影响CFRC材料性能。碳纤维在水泥基体中分解性差,易集束或成团。本文用单丝、束丝拔出实验来考察集束效应对CFRC界面及力学性能的影响;结合V.C.Li提出的束丝数学模型和实验结果对照;最后探讨了集束效应影响的机理。  相似文献   

4.
根据高温烧结短碳纤维增强熔石英玻璃陶瓷复合材料的工艺原理,建立了一个研究短碳纤维增强熔石英玻璃陶瓷复合材料性能的细观力学理论模型,该模型由熔石英基体、氮化硅颗粒和碳纤维增强相组成的多相复合体,并假设细观结构呈周期性均匀分布,采用二尺度展开法计算了复合材料的力学性能.得出了在不同烧结温度和短碳纤维增强相体积分数条件下,复合材料横向Young氏模量、Poisson比和剪切模量的变化曲线,其变化规律与实验数据吻合较好.研究表明:在烧结温度为1 400℃和短碳纤维增强相体积分数为30%时,复合材料的有效刚度系数,以及Young氏模量和剪切模量均随着碳纤维体积分数的增大先增大后减小;在碳纤维体积分数为30%时,上述各量取得最大值,此时复合材料具有最佳的力学性能.  相似文献   

5.
提高碳纤维分散性及碳纤维纸强度的研究   总被引:2,自引:0,他引:2  
研究了碳纤维长度、分散剂种类、分散质量分数对碳纤维在水中分散性能的影响及添加粘合纤维提高碳纤维纸强度的方法。结果表明:添加分散剂能有效改善碳纤维的分散性,以APAM和PU分散剂复配使用为最佳;碳纤维越长或分散质量分数越高越难分散,适宜的碳纤维长度为2~6 mm;用木浆或热熔纤维作粘合纤维能有效提高碳纤维纸的强度。  相似文献   

6.
7.
为进一步研究碳纤维聚氨酯水泥(CPUC)复合材料的力学性能,采用正交试验方法讨论了影响CPUC压缩、劈拉、抗折强度的主要因素,确定其最优配合比。试验结果表明:硅灰掺量是影响CPUC压缩强度的主要因素,碳纤维掺量是影响CPUC劈拉和抗折强度的主要因素。CPUC作为抗压加固材料时,最优组合为聚灰比1∶0. 7、8%硅灰替代水泥; CPUC作为抗拉加固材料时,最优配合比为聚灰比1∶0. 7、3%硅灰替代水泥并添加质量分数不大于2%的碳纤维。  相似文献   

8.
将短切碳纤维(CF)、白炭黑和甲基乙烯基硅橡胶(VMQ)共混后,与碳纤维布(CFC)复合制备VMQ复合材料.考察了CFC层数对复合材料的拉伸性能、邵尔A硬度、耐磨性能及动态力学性能的影响.结果表明,随着CFC层数的增加,复合材料的扯断伸长率基本不变,拉伸强度逐渐升高.与仅添加10份(质量,下同)CF的复合材料相比,加入...  相似文献   

9.
碳纤维增强水泥/混凝土材料力学性能的若干研究   总被引:1,自引:1,他引:1  
本文通过对水泥基体掺入碳纤维进行研究,得出了复合体抗压强度、劈拉强度与碳纤维掺量的关系。同时文中还利用聚丙烯腈纤维作对比研究,得出目前碳纤维作为增强体的优缺点,为碳纤维增强水泥基复合材料的推广应用提供更多的实验依据。  相似文献   

10.
大丝束碳纤维复合材料力学性能研究   总被引:2,自引:1,他引:2  
本文研究了大丝束碳纤维(48K)复合材料的常规力学性能及耐湿热性能,并与小丝束碳纤维(T300.3K)复合材料进行了对比,研究结果可为大丝束复合材料在航空器的次承力件或非承力件的应用提供技术基础。  相似文献   

11.
PEG-lignin fibers obtained by a solvolysis pulping of Japanese cedar with polyethylene glycol (PEG) 400 were successfully converted into defective-free, infusible fibers as a precursor for carbon fibers (CFs) by chemical curing followed by oxidative thermostabilization. The curing was performed by immersing PEG-lignin fibers in an aqueous mixed solution of hexamethylenetetramine (60 g/L) and hydrochloric acid (3 M) at 85°C for 1 h, resulting in the formation of crosslinkages between lignin molecules through methylene groups. These cured fibers were completely thermostabilized upon heating up to 250°C at a heating rate of 2°C/min under an air atmosphere. Finally, the thermostabilized fibers were carbonized to yield CFs, which showed about 1.5 times the tensile strength of our CFs previously prepared.  相似文献   

12.
碳布复合材料力学性能研究   总被引:1,自引:1,他引:1  
测试了两种不同经纬编织密度和不同含胶量的碳布/环氧复合材料的基本力学性能,对碳纤维复丝及碳布在复合材料中的强度利用率作了比较与分析。结果表明:适当增大含胶量有利于改善复合材料的力学性能;经纬编织密度对复合材料力学性能的影响同样不可忽视。  相似文献   

13.
采用以钢铁为基体高分子自润滑复合材料为衬层制作的传动件,兼有优良的减磨耐磨性能和高的承载能力。研究了组分对复合材料性能的影响,制备了机械和摩擦学性能好的碳纤维增强复合材料,其黏结强度和压缩强度分别达到16~18 MPa和85~91 MPa,冲击强度达19.67~23.45 kJ/m2;与锡青铜ZQSn6-6-3摩擦对比试验表明,复合材料在重载工况下具有更优良的摩擦性能,工作状况稳定,油摩擦因数为0.077,仅为ZQSn6-6-3的59%。试验还发现,轻载启动和在摩擦面开设润滑油槽有助于改善摩擦状况。  相似文献   

14.
活性炭纤维的高功能化   总被引:2,自引:0,他引:2  
综合评述国内外在活性炭纤维(ACF)的形态改变、结构控制、碳合金化(化学改性)等方面开拓新功能,提高性能/价格比所进行的研究与开发现状。  相似文献   

15.
以全氢聚硅氮烷(PHPS)为先驱体,采用聚合物浸渍裂解工艺制备BN纤维织物增强陶瓷透波材料,研究了复合材料的致密化工艺和力学性能。结果表明:先驱体PHPS在1637℃裂解产物主晶相为α-Si3N4。以PIP工艺制备BNf/Si3N4复合材料,经过4个浸渍裂解周期密度达到1·5g/cm3,复合材料的室温弯曲强度达到39·6MPa。裂解过程中,PHPS与BN纤维发生了强界面反应,导致复合材料力学性能不高。  相似文献   

16.
The mechanical and dynamic behavior of FFF 3D printed polyethylene terephthalate glycol (PETG) and PETG reinforced with 20% carbon fibers is presented in this paper using several experimental tests. Compression tests, cyclic compression tests, nanoindentation, and modal tests were used as the assessment procedures. The results reveal that the addition of carbon fibers decrease as much as 66% the compressive strain, while increase the modulus and the hardness by around 30 and 27%, respectively. The loss factor and damping as calculated from the cyclic compression and models tests dropped from 17.3 to 15.4% and 13.8 to 12.3%, respectively.  相似文献   

17.
综述了近年CNTs增强聚合物复合材料的制备方法,重点分析了制备过程中影响复合材料力学性能的主要因素,总结了聚合物/CNTs复合材料制备过程中存在的技术难题并对其未来的发展应用进行了展望。  相似文献   

18.
Composites consisting of carbon fibers (CF) and carbon particles (CP) in polypropylene (PP) matrix were melt-compounded. Composites were analyzed for their mechanical, electrical and thermal properties. Results indicate that the addition of these fillers improved the mechanical properties of the composites. Thermal conductivity was enhanced as the concentration of fillers was increased. Carbon fibers render the composites electrically conductive so we observed a percolation threshold near 10 wt.% of CF for PP/CF (PP and CF composite) and near 25 wt.% of CP for PP/CP (PP and carbon particle composite). All the results indicated that carbon fibers are more effective in improving the properties as compare to the carbon particles.  相似文献   

19.
《国际聚合物材料杂志》2012,61(13):1021-1034
In the present study, Spartium junceum (SJ) fibers were chemically treated with different concentrations of two coupling agents, silane N [-3 Trimethoxysilyl propyl] ethylene diamine (Z-6020) and stearic acid, in order to improve the mechanical properties of polypropylene/Spartium junceum fibers (PP/SJ) composites. The chemical modification efficiency was verified by FTIR analysis, which showed the appearance of bands around 1260 and 1100 cm?1 attributed to asymmetric stretching of Si-O-Si linkage and Si-O-Cellulose for (Z-6020) modified SJ fibers. The mechanical properties of the composites prepared from chemically treated Spartium junceum fibers are found to increase substantially compared to those with untreated fibers.  相似文献   

20.
碳纤维增强水泥基复合材料的电磁屏蔽性能   总被引:1,自引:0,他引:1  
利用弓形法测试了碳纤维质量掺量分别为0.2%、0.4%、0.6%、0.8%和1.0%时,碳纤维增强水泥基复合材料(CFRC)在低频段4~8 GHz和高频段8~18 GHz对电磁波的反射率,讨论了碳纤维质量掺量变化对反射率的影响。结果发现,碳纤维质量掺量相同、低频段时,反射率小于-10 dB,复合材料对电磁波表现出吸收性;高频段时,反射率大于-10 dB,复合材料对电磁波表现出反射性。低频段、碳纤维质量掺量为0.6%时出现最小反射率-15.1 dB;高频段、碳纤维质量掺量为0.4%时,出现最小反射率-19.4 dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号