首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solar cells of CuInS2/In2S3/ZnO type are studied as a function of the In2S3 buffer deposition conditions. In2S3 is deposited from an aqueous solution containing thioacetamide (TA), as sulfur precursor and In3+. In parallel, variable amounts of In2O3 are deposited that have an important influence on the buffer layer behavior. Starting from deposition conditions determined in a preliminary study, a set of parameters is chosen to be most determining for the buffer layer behavior, namely the solution temperature, the concentration of thioacetamide [TA], and the buffer thickness. The solar cell results are discussed in relation with these parameters. Higher efficiency is attained with buffer deposited at high temperature (70 °C) and [TA] (0.3 M). These conditions are characterized by short induction time, high deposition rate and low In2O3 content in the buffer. On the other hand, the film deposited at lower temperature has higher In2O3 content, and gives solar cell efficiency sharply decreasing with buffer thickness. This buffer type may attain higher conversion efficiencies if deposited on full covering very thin film.  相似文献   

2.
Microcrystals of In2S3 were formed on sintered In2O3 pellets by sulfurizing in H2S atmosphere. The flat band potential of compound In2S3|In2O3 electrodes was evaluated as −1.0 V vs Ag|AgCl in 1 M KOH, 1 M Na2S, 10−2 M S. Significantly enhanced photocurrent was observed on compound In2S3|In2O3 electrodes with a lower degree of sulfurization to that of compound In2S3|In2O3 electrodes with higher degree of sulfurization. Photocurrent generation of compound In2S3|In2O3 electrodes was explained from the viewpoint of semiconductor sensitization.  相似文献   

3.
Thin film CuInS2:Ga solar cell absorber films were prepared by sequential evaporation of Cu–In–Ga precursors and sulfurization in sulfur vapor. The depth distribution of Ga was found to be highly inhomogeneous caused by CuGaS2 phase segregation at the back contact. Depending on overall Ga content and sulfurization temperature a quaternary CuGaxIn1−xS2 compound formed exhibiting a shift in absorber lattice constant and band gap. Micro Raman measurements showed that crystal quality was also affected by Ga. Open-circuit voltages well above 800 mV were achieved while sustaining high fill factors of 71%.  相似文献   

4.
Optimization of substrate temperature of spray pyrolysed CuInS2 absorber is discussed along with its effect on the photoactivity of junction fabricated. For CuInS2 thin films, properties like crystallinity, thickness and composition showed progressive behavior with substrate temperature. X-ray photoelectron spectroscopic depth profile of all the samples showed that the concentration of copper on the surface of the films is significantly lesser than that in the bulk thus avoiding need for toxic cyanide etching. Interestingly, samples prepared at 623 K had higher conductivity compared to those prepared above and below this temperature. Also, the low energy transition, in addition to the direct band gap which was observed in other samples were absent in films prepared at 623 K. From thermally stimulated conductivity studies it was seen that shallow levels present in this sample contribute to its improved conductivity. Also, CuInS2/In2S3 bilayer prepared at this substrate temperature showed higher photoactivity than those prepared at other temperatures.  相似文献   

5.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

6.
CuInS2 thin-films were prepared by sulfurization of Cu---In---O precursors in H2S gas. X-ray diffraction patterns showed that In2O3 phases did not remain in the CuInS2 films sulfurized in a H2S and H2 atmosphere, whereas In2O3 phase remained in the films sulfurized in a H2S and Ar atmosphere. The performance of CuInS2 solar cells were studied as a function of the H2 gas pressure during sulfurization. The open-circuit voltage, short-circuit current and fill factor increased with increasing the H2 gas pressure. The conversion efficiency of the CuInS2 solar cells is strongly affected by the reduction of the Cu---In---O precursors.  相似文献   

7.
Cu2Se/InxSe(x≈1) double layers were prepared by sequentially evaporating In2Se3 and Cu2Se binary compounds at room temperature on glass or Mo-coated glass substrates and CuInSe2 films were formed by annealing them in a Se atmosphere at 550°C in the same vacuum chamber. The InxSe thickness was fixed at 1 μm and the Cu2Se thickness was varied from 0.2 to 0.5 μm. The CuInSe2 films were single phase and the compositions were Cu-rich when the Cu2Se thickness was above 0.35 μm. And then, a thin CuIn3Se5 layer was formed on the top of the CuInSe2 film by co-evaporating In2Se3 and Se at 550°C. When the thickness of CuIn3Se5 layer was about 150 nm, the CuInSe2 cell showed the active area efficiency of 5.4% with Voc=286 mV, Jsc=36 mA/cm2 and FF=0.52. As the CuIn3Se5 thickness increased further, the efficiency decreased.  相似文献   

8.
The intermediate solid solution, γ-phase, exists in the CuInSe2+2CdS⇔CuInS2+2CdSe reciprocal system. It crystallizes in the cubic structure and has a wide homogeneity range. Single crystals of the γ-phase are grown by a modified Bridgman method and their composition, crystal structure, optical and electrical properties are studied. The band gap varies from 1.43 to 1.05 eV along the ‘Cu3Cd2In3S8’-‘CuCd2InSe4’ compositional section. The crystals are photosensitive, mostly p-type, with hole concentrations in the 1015-1016 cm−3 range and mobilities up to 18 cm2/V s. The results indicate that the γ-phase can be considered as a new absorbing material for thin-film solar cells.  相似文献   

9.
Transport of mobile ions in n-TiO2/n-CuInS2/p-CuInS2 thin-film devices is studied with the transient ion-drift (TID) method. In contrast to the normal TID method, a mobile ion profile is created in the CuInS2 layer, which can be described by the Gouy-Chapman theory. Activation energies for diffusion of 0.5 and 1.0 eV are found. We postulate that these activation energies are related to the associated defect, ( InCu)x, which introduces a deep electronic state inside the bandgap of CuInS2. This defect can accept or release an electron and drift out of the depletion region. This will lower the concentration of recombination centers in the depletion region, which explains the self-healing property of CuInS2.  相似文献   

10.
Sintered Bi2O3 pellets exhibited insulating properties at room temperature. Partial reduction of sintered Bi2O3 pellets increased the conductivity. Reduced Bi2O3 pellets exhibited n-type semiconductor properties. Microcrystals of Bi2S3 were formed on sintered Bi2O3 pellets by sulfurizing them in H2S atmosphere. The direct band-gap and indirect band-gap of Bi2S3 were evaluated as 1.2 and 0.4 eV, respectively. A high incident photon to current conversion efficiency in the near IR region was observed on Bi2S3|Bi2O3 electrodes. Photocurrent generation of Bi2S3|Bi2O3 electrodes was explained from the viewpoint of semiconductor sensitization. The flat band potential of Bi2S3 was evaluated as −1.1 V vs. Ag|AgCl in aqueous polysulfide redox electrolyte (1 M OH, 1 M S2−, 10−2 M S).  相似文献   

11.
AgInS2 thin films have been prepared on glass substrates by the spray pyrolysis process using an aqueous solution which contains silver acetate (AgCH3CO2), thiourea (SC(NH2)2) and indium chloride (InCl3) as precursors. The depositions were carried out in the range of the substrate temperature from 260 to 420 °C. The value of the concentration ratio in the spray solution of indium and silver elements x=[Ag+]/[In3+] was varied from 1 to 1.5 with [In3+]=10−2 M and [S2−]/[In3+] was taken constant, equal to 4. The structural study shows that AgInS2 thin film, prepared at 420 °C using optimal concentration ratio x=1.3 crystallizes in the chalcopyrite phase with a strong (1 1 2) X-ray diffraction line. Moreover, microprobe analysis (EPMA) shows that a nearly stoichiometric composition is obtained for these experimental conditions. Indeed, the atomic percentage of elements were. 24.5, 25.0, 49.5 for Ag, In and S, respectively. On the other hand from transmission and reflectance spectra, the obtained band gap energy is 1.83 eV for such film.  相似文献   

12.
Thin CuInS2 films were prepared by sulfurization of Cu/In bi-layers. First, the precursor layer was electroplated onto the treated surface of Mo-coated glass. Observation of the cross-section prepared by focused ion beam (FIB) etching revealed that the void-free film was initially formed on the top surface of the precursor layer and continued to grow until the advancing front of the film reached the Mo layer. The nucleation of voids near the bottom of the CuInS2 film followed. To determine whether the condition of the Cu/In alloy influences the CuInS2 quality we investigated the Cu/In alloy state using FIB. We found that the annealed precursor of low Cu/In ratio (1.2) has several voids in the mid position in the layer compared with Cu-rich precursor (1.6). The cross-sectional view of the Cu-rich absorber layer is uniform compared with the low copper absorber layer. Thin film solar cells were fabricated using the CuInS2 film (Cu/In ratio: 1.2) as an optical absorber layer. It was found that the optimization of a sulfurization period is important in order to improve the cell efficiency. We have not yet obtained good results with high Cu-rich absorber because of a blister problem. This blister was found before sulfurization. So, we are going to solve this blister problem before sulfurization.  相似文献   

13.
The controlled incorporation of sodium into the absorber layer of CuInS2 solar cells improved cell performance remarkably. Without toxic KCN treatment, conversion efficiencies of over 6% were achieved by sulfurization of sodium-containing precursors. We also investigated the characteristics of the sodium-incorporated CuInS2 films by intentional addition and diffusion from a soda-lime glass. The ternary compound semiconductor of NaInS2 was found to form mainly on the surface of each of the CuInS2 films.  相似文献   

14.
ZnO/CuInS2 core/shell nanorods array thin film was synthesized on conducting glass substrates for photoelectrochemical water splitting via a simple hydrothermal and cation exchange reaction, using ZnO nanorods array as reactive template. Uniform CuInS2 films were obtained on the surface of ZnO nanorods, based on the ion-by-ion growth mechanism. The optical property of core/shell nanoarray was characterized, and enhanced absorption spectrum was observed. Hydrogen generation efficiency of 3.2% at 0.29 V versus saturated calomel electrode was achieved with synthesized ZnO/CuInS2 core/shell nanoarray electrode due to the improved absorption and appropriate energy gap structure. The synthesized core/shell nanoarray has potential application in photoelectrochemical water splitting.  相似文献   

15.
Single crystals CuInS2 were grown by iodine vapour transport method, whereas polycrystalline thin films were obtained by coevaporation technique from three sources. The temperature dependence of the hole mobility in valence band is analysed by taking into account contributions from several scattering mechanisms of the charge carriers. To account for the temperature dependant conductivity of polycrystalline CuInS2 thin films, grainboundary conduction process was suggested. In the low temperature region, we interpret the data in terms of the Mott law and the analysis is very consistent with the variable range hopping. However, thermionic emission is predominant at high temperatures. Photoluminescence measurements have been performed on CuInS2 crystals and the analysis has revealed that the emission is mainly due to free-to-bound and donor–acceptor pair transitions. The band gap of that compound is derived from the excitonic emission line at 1.53 eV.  相似文献   

16.
We report the electro deposition of In2S3 buffer layers for CuInS2 solar cells. All materials and deposition conditions were selected taking into account environmental, economic and technological aspects of a potential transfer to large volume industrial production. Different bath compositions and electro deposition parameters were studied. The obtained films exhibited complete substrate coverage, confirmed by SEM and XPS. In/S ratio close to 2/3 was obtained. XPS measurements detected the presence of indium hydroxide, transforming into oxide upon anneal at 200 °C. Maximum photoelectric conversion efficiency of 7.1% was obtained, limited mainly by a low fill factor (51%). Further process optimization is expected to lead to efficiencies comparable to CdS buffers. So far, open-circuit voltages as high as 660 mV were demonstrated.  相似文献   

17.
Quantitative phase analysis of Cu(In1−xGax)Se2 (CIGS) thin film grown over Mo coated soda lime glass substrates was studied by Rietveld refinement process using room temperature X-ray data at θ-2θ mode. Films were found to contain both stoichiometric Cu(In1−xGax)Se2 and defect related Cu(In1−xGax)3Se5 phases. Best fitting was obtained using crystal structure with space group I-42d for Cu(In1−xGax)Se2 and I-42m for Cu(In1−xGax)3Se5 phase. The effects of Ga/III (=Ga/In+Ga=x) ratio and Se flux during growth over the formation of Cu(In1−xGax)3Se5 defect phase in CIGS was studied and the correlation between quantity of Cu(In1−xGax)3Se5 phase and solar cell performance is discussed.  相似文献   

18.
Hall-effect and photoluminescence measurements have been carried out on as-grown and In/Ga-annealed CuInSe2 and CuGaSe2 single crystals grown by chemical vapor transport. Various defect levels in these related compounds have been identified and compared. VCu and VSe show similar properties and activation energies in both materials. A tremendous difference is observed in the behavior of IIICu antisite defects. GaCu levels in CuGaSe2 are much deeper than InCu in CuInSe2, and furthermore, the formation of InCu is much easier compared to GaCu. This is related to the higher formation energy of GaCu in CuGaSe2. Due to this difference in the defect chemistry of both compounds, it has not been possible until now, to prepare n-type CuGaSe2 crystals, whereas CuInSe2 is easily transformed from p- to n-type by annealing in vacuum or In-atmosphere.  相似文献   

19.
Photo-assisted H2 evolution has been realized over the new heterosystem CuFeO2/SnO2 without any noble metal and was studied in connection with some physical parameters. The delafossite CuFeO2 has been prepared by thermal decomposition from various salts. The polarity of generated voltage is positive indicating that the materials exhibit p-type conductivity whereas the electroneutrality is achieved by oxygen insertion. The plot of the logarithm (conductivity) vs. T−1 gives average activation energy of 0.12 eV. CuFeO2 is a narrow band gap semiconductor with an optical gap of 1.32 eV. The oxide was characterized photoelectrochemically; its conduction band (−1.09 VRHE) is located below that of SnO2 (−0.86 VRHE) at pH ∼13.5 itself more negative than the H2O/H2 level leading to a thermodynamically favorable H2 evolution under visible irradiation. The sensitizer CuFeO2, working as an electron pump, is stable towards photocorrosion by hole consumption reactions involving the reducing agents X2− (=S2O32− and SO32−). The photoactivity was dependent on the precursor and the best performance (0.026 ml h−1 mg−1) was obtained in S2O32− (pH ∼13.5) over CuFeO2 synthesized from nitrate with a mass ratio (CuFeO2/SnO2) equal to unity. A quantum yield of 0.5% was obtained under polychromatic light. H2 liberation occurs concomitantly with the oxidation of S2O32− to dithionate and sulfate. The tendency towards saturation, in a closed system, is mainly ascribed to the competitive reduction of the end product S2O62−.  相似文献   

20.
A new system using Bi2S3-loaded TiO2 photocatalysts (Bi2S3/TiO2) was developed to enhance the production of hydrogen. The Bi2S3 (5, 10, 15 wt%) particles in an urchin-like morphology with a length of about 2∼3 μm and a diameter of 15–20 nm, which can absorb all wavelengths in UV–visible radiation, were prepared by solvothermal method and loaded onto nano-sized TiO2 (10∼15 nm) for photocatalysis on hydrogen production. The evolution of H2 from methanol/water (1:1) photo splitting over the Bi2S3/TiO2 composite in the liquid system was enhanced, compared with that over pure TiO2 and Bi2S3. In particular, 14.2 ml of H2 gas was produced after 12 h when 0.5 g of a 10 wt% Bi2S3/TiO2 composite was used. On the basis of cyclic voltammetry (CV) results, the high photoactivity was attributed to the increase of band gap in the Bi2S3/TiO2 composite, due to the decreased recombination between the excited electrons and holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号