首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents the electrocatalytic evaluation of Ni/TiO2 hollow sphere materials in PEM water electrolysis cell. All the electrocatalysts have shown remarkably enhanced electrocatalytic properties in comparison with their performance in aqueous electrolysis cell. According to cyclic voltammetric results, 0.36 A cm?2 peak current density has been exhibited in hydrogen evolution reaction (HER) from 30 wt% Ni/TiO2 electrocatalyst. 15 wt% Ni-doped titania sample has shown the best result in oxygen evolution reaction (OER) with the anodic peak current density of 0.3 A cm?2. In the anodic polarization curves, the performance of 15 wt% Ni/TiO2 hollow sphere electrocatalyst was evaluated up to 140 mA cm?2 at comparatively lower over-potential value. 20 wt% Ni/TiO2 hollow sphere electrocatalyst has also shown electrochemical stability in PEM water electrolyzer for 48 h long analysis. The comparative electrocatalytic behavior of hollow spherical materials with non-sphericals is also presented, which clearly shows the influence of hollow spherical structure in greater electrocatalytic activity of the materials. The physical characterization of all the hollow spherical materials is presented in this work, which has confirmed their better electrochemical behavior in PEM water electrolyzer.  相似文献   

2.
Nanostructured MnO2/mesocarbon microbeads (MCMB) composite has been prepared successfully for use in zinc-air cell as electrocatalyst for oxygen reaction. The scanning electron microscope (SEM) images showed that the MnO2 nanorods were formed and covered on the surface of MCMB in bird’s nest morphology. X-ray diffraction (XRD) pattern indicated that the MnO2 has the hollandite structure with a composition approximating KMn8O16. By the cathodic polarization curve tests, the nanostructured material demonstrated excellent electrocatalytic activity as a kind of oxygen electrode electrocatalyst compared with electrolytic MnO2. An all solid-state zinc-air cell has been fabricated with this material as electrocatalyst for oxygen electrode and potassium salt of cross-linked poly(acrylic acid) as an alkaline polymer gel electrolyte. The cell has good discharge characteristics at room temperature.  相似文献   

3.
Sarawalee Thanasilp  Mali Hunsom 《Fuel》2010,89(12):3847-3852
The effect of three different membrane electrode assembly (MEA) fabrication techniques, catalyst-coated substrate by direct spray (CCS) and catalyst-coated membrane by direct spray (CCM-DS) or decal transfer (CCM-DT), on the performance of oxygen reduction in a proton exchange membrane (PEM) fuel cell was carried out under identical conditions of Pt–Pd/C electrocatalyst loading. The results indicated that the fabrication technique had only a very slight effect on the ohmic resistance of the PEM fuel cell but it significantly affected the charge transfer resistance and open circuit voltage (OCV). The cells prepared by the CCM method, and particularly by decal transfer, exhibited a significantly higher OCV but a lower ohmic and charge transfer resistance compared with the other investigated fabrication techniques. By using cyclic voltammetry with H2 adsorption, it was found that the electrochemical active area of the electrocatalyst prepared by CCM-DT was higher than those prepared by CCS and CCM-DS by around 1.76- and 1.05-fold, respectively. Under a H2/O2 system at 0.6 V, the cells with MEA made by CCM-DT provided the highest cell performance of around 350 mA/cm2, significantly greater than those prepared by the CCS and CCM-DS (149 and 42 mA/cm2, respectively).  相似文献   

4.
The performance of the Li/SO2Cl2 primary cell was studied as a function of the type of the carbon cathode, cathode catalysts and electrolyte additives. Solutions of LiAICl4 in S02 are more conductive than those in SO2Cl2 and, consequently, the electrolyte resistance in the Li/SO2Cl2 cell decreases during discharge as one mole of S02 is formed per mole of SO2Cl2. The replacement of the low surface area Chevron acetylene black carbon with the high surface area Ketjenblack carbon cathode increases cell capacity and reduces cathode polarization. The high surface area carbon, however, causes a deterioration in the storability of the cell, manifested as higher self-discharge rate. The use of carefully purified SO2Cl2, and of Ca2+ as an additive to the electrolyte, has been found to reduce the voltage delay of the cells stored at 70°C. The low temperature discharge capacity of the Li/SO2Cl2 cell can be increased with the addition of S02. Furthermore, the added S02 appeared to improve the storability of the cells. Cathodes doped with a catalyst consisting of a mixture of polyacrylonitrile and Co, Ni or Fe-salts, after heat treatment at 800° C, demonstrated 350–500 mV gain in the load voltage at 25 mA cm–2. Catalysed cells stored at 70°C retained their higher cell voltage but, like the uncatalysed cells, showed a loss in capacity.  相似文献   

5.
A manganese dioxide (MnO2) cathode with zinc (Zn) as the anode has been investigated using lithium sulphate (Li2SO4) as an electrolyte. Previously we demonstrated that cells comprising MnO2 and lithium hydroxide (LiOH) as an electrolyte can be made rechargeable to over one-electron capacity with a discharge capacity of 150 mAh g−1. Here we have extended our work to assess Li2SO4 as an electrolyte and have found that the battery is not rechargeable. Based on the electrochemical (discharge/charge) performance and the products formed following discharge and charge, the mechanism proposed for the sulphate-based media is one of proton insertion into the MnO2 cathode, rather than the lithium ion insertion observed for the LiOH electrolyte. The addition of bismuth species to the Li2SO4-based cell results in a transition to rechargeable behaviour. This is believed to be due to the influence of Bi ions on the formation of soluble Mn3+ soluble intermediates. However, the coulombic efficiency of the cell diminishes rapidly with repeated charge/discharge cycles. This confirms that the nature of the Li-containing electrolyte has a marked influence on the electrochemistry of the cell.  相似文献   

6.
Ion conducting solid polymer electrolytes based on a polymer polyvinyl alcohol (PVA) complexed with magnesium acetate (Mg(CH3COO)2) were prepared by solution cast technique. Various experimental techniques, such as XRD, DSC, composition-dependent conductivity, temperature-dependent conductivity, and transport number measurements are used to characterize these polymer electrolyte films. The transference number data indicated the dominance of ion-type charge transport in these polymer electrolyte systems. An electrochemical cell with the configuration Mg/(80PVA + 20Mg(CH3COO)2)/(I2 + C + electrolyte) has been fabricated and its discharge characteristics were studied. The Open Circuit Voltage (OCV) is 1.84 V.  相似文献   

7.
The solid electrolyte cell Cu,Z/Z/CuxTiS2,Z, graphite (Z=Rb4Cu16I7Cl13) was investigated in a search for a cell with high and stable open circuit voltage (OCV). The cells Cu/Cux Tis2 (x=0 and 0.3–0.5) showed only a small reduction in OCV values over 200 days. The cause of the slight decrease of OCV was discussed from the viewpoint of degradation of the cell-component materials. Polarization curves and constant load discharge curves were obtained to indicate that the cathode polarization was predominant and that CuxTiS2 of 0.3x0.5 performed well, as did TiS2.  相似文献   

8.
Three different concepts for H2–Cl2 fuel cells have been evaluated. An ordinary PEM fuel cell based on a Nafion membrane, a fuel cell based on a combination of circulating hydrochloric acid and a Nafion membrane and a system based on a phosphoric acid doped Polybenzimidazole (PBI) membrane. None of the investigated systems were able to demonstrate stable operation under the conditions used in this study, due to electrocatalyst corrosion, membrane dehydration and/or electrode flooding. All systems studied achieved open circuit voltages close to the reversible thermodynamic value for production of aqueous hydrochloric acid, suggesting formation of dissolved HCl in the electrolyte and fast electrode kinetics.  相似文献   

9.
The chemical stability of La0.6Ca0.4CoO3 perovskite as an electrocatalyst in bifunctional oxygen electrodes has been studied by ex-situ and in-situ X-ray absorption spectroscopy and X-ray diffraction measurements. The catalyst was investigated ex-situ as a powder mixed with BN, and in-situ on carbon supports in bilayer air electrodes at different potentials in an electrochemical cell with an alkaline electrolyte. It was found to be stable for at least 1300 h in electrodes operated under the conditions of rechargeable Zn/air cells.  相似文献   

10.
Different aqueous-based electrolytes have been tested in order to improve the electrochemical performance of hybrid (asymmetric) carbon/MnO2 electrochemical capacitor (EC). Chloride and bromide aqueous solutions lead to the formation of Cl2 and Br2 respectively upon oxidation of the corresponding salt, thus limiting the useful electrochemical window of the MnO2 electrode and producing gas evolution (in the case of chloride salts) detrimental to the cycling ability of an hybrid device. For sulfate and nitrate salts, MnO2 electrode exhibits a 20% increase in capacitance when lithium is used as the cation compared to sodium or potassium salts, probably due to partial lithium intercalation in the tunnels of α-MnO2 structure. The higher ionic conductivity and solubility of LiNO3 has led to the investigation of this electrolyte in carbon/MnO2 supercapacitor compared to standard hybrid cell using K2SO4. A lower resistance increase was evidenced when the temperature was decreased down to −10 °C. Long term cycling ability of carbon/MnO2 supercapacitor was also evidenced with 5 M LiNO3 electrolyte.  相似文献   

11.
The highest conducting amorphous solid electrolyte composition (mol %) 70AgI-20Ag2O-10(0.8V2O5-0.2P2O5) in the system AgI-Ag2O-V2O5-P2O5 was investigated as an electrolyte material for solid state cells with organic cathodes by studying the electrochemical properties. The variation of open circuit voltage (OCV) with temperature, current discharge and the load characteristics were determined for the cells with iodine, tetramethyl ammonium iodide and tetrabutyl ammonium iodide as cathode materials. The cell capacities were estimated from the load characteristic curves and, in general, the cells were found to have very good stability at low current discharges even at high temperatures. In addition, it was found that the silver on the working electrode is electrochemically active and can be oxidized to Ag+ ions, making the organic cathode cells rechargeable. Thus these cells find potential use in rechargeable micropower sources and uninterrupted power supplies for microelectronic circuit devices.  相似文献   

12.
《Ceramics International》2022,48(18):26476-26486
In this paper, the influence of Bi/Zn mass ratio on the phase composition, microstructure, sintering properties, and electrical properties of Bi/Zn co-added Nd0.2Ce0.8O1.9 (NDC) used for intermediate-temperature solid oxide fuel cells (SOFCs) was investigated. At 700 °C, the total conductivity of the NDC-based electrolyte (3Bi/1Zn-NDC) with the mass ratio 3:1 for Bi2O3 and ZnO was as high as 5.89 × 10?2 S cm?1, 4.60 and 4.51 times higher than the single addition of 4 wt% Bi2O3 and 4 wt% ZnO, respectively. In addition, the 3Bi/1Zn-NDC electrolyte exhibited a good physical and chemical compatibility with the electrode materials. The open circuit voltage (OCV) of the cell supported by the 3Bi/1Zn-NDC electrolyte was 0.67 V, and the output power density could reach 402.25 mW cm?2 at 700 °C. It showed stable power output and OCV in the long-term stability test within 50 h. Overall, the combination of 3 wt% Bi2O3 and 1 wt% ZnO was a very effective dual sintering aid for NDC electrolyte.  相似文献   

13.
We have developed preparation protocol of practically large size self-humidifying polymer electrolyte membranes (PEMs) with highly dispersed nanometer-sized Pt and/or SiO2 for fuel cells. The Pt particles were expected to catalyze the recombination of H2 and O2, leading to a suppression of the chemical short-circuit reaction at the electrodes, while the SiO2 particles were expected to adsorb the water produced at the Pt particles together with that produced at the cathode reaction. Stable SiO2 particles were formed in a commercial PEM (Nafion®112) via in situ sol-gel reactions at 70 °C. It was found by SAXS that the hydrophilic cluster size increased by water adsorbed SiO2, which may contribute to the increase in the proton conductivity once SiO2 adsorbed water. Pt particles were uniformly dispersed in a Na+-form normal-PEM or SiO2-PEM by an ion-exchange reaction with [Pt(NH3)4]Cl2, followed by a reduction with 1-pentanol at 125 °C. The newly prepared Pt-SiO2-PEM was found to perform a self-humidifying operation in a standard-size PEFC (25 cm2 electrode area) with H2 and O2 humidified at 30 °C. The performance of the Pt-SiO2-PEM cell operated with the low humidity reactant gases was as high as the normal-PEM cell fully humidified, because the ohmic resistance of the former cell was as low as the latter cell.  相似文献   

14.
A double gas concentration cell as combination of the cell with the yttria stabilized zirconia (YSZ) electrolyte and the cell with molten Li2CO3 + Na2CO3 eutectics is proposed as an alternative cell system with a standard reference electrode for measurements of the open-circuit potential (OCP) values of electrodes in oxygen concentration cell with the yttria stabilized zirconia (YSZ) electrolyte. In this double-cell one electrode is common for the two cells and the reference electrode is the standard molten carbonate half-cell with 0.33O2 + 0.67CO2 atmosphere. This reference electrode should enable the monitoring of OCP and overpotential values in polarization studies in the three-electrodes configuration. If the possible reaction between the solid YSZ and liquid molten carbonates electrolyte is very slow, the measured values of the open-circuit-voltage (OCV) of this cell may be considered equal to the respective reversible electromotive forces (EMF). Very good resistance of the smooth YSZ products to the corrosion in highly dehydrated Li/Na molten carbonates has been shown in experiments lasting few 1000 h. Hence, the consistency of OCV values with the respective EMF values have been tested at various partial pressures of CO2 and O2 in the gas mixtures above the molten carbonate electrolyte and at various partial pressures of O2 + Ar or H2 + H2O gas mixtures at the Au or Pt electrodes/YSZ interface. The results have shown the reliability of the double-cell in determination of the open-circuit potentials (OCP) of gas electrodes at the YSZ surface as measured versus the reference electrode with molten carbonate electrolyte. The consistency of OCP and EMF values has been shown satisfying and enhances to use the proposed double-cell in further investigations of OCP and overpotential values at TPB of electrode/YSZ/mixture of reacting gases. At high differences of O2 partial pressures on both sides of the YSZ membrane some permeation of this gas through the YSZ membrane has been observed. Probably, this effect has an electrochemical character.  相似文献   

15.
Anode-supported solid oxide fuel cells (SOFCs) comprising NiO-samarium-doped ceria (SDC) (Sm0.2Ce0.8O1.9) composite anode, thin tri-layer electrolyte, and La0.6Sr0.4Co0.8Fe0.2O3 (LSCF)-La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) composite cathode were fabricated. The thin tri-layer consisting of an 11-μm thick LSGM electrolyte layer and a 12-μm thick La0.4Ce0.6O1.8 (LDC) layer on each side of the LSGM was prepared by centrifugal casting and co-firing technique. The performance of the cells operated with humidified H2 as fuel and ambient air as oxidant showed a maximum power density of 1.23 W cm−2 at 800 °C. A stability test of about 100 h was carried out and some deterioration of output power was observed, while the open circuit voltage (OCV) kept unchanged. Impedance measurements showed that both the electrolyte ohmic resistance and the electrode polarization increased with time and the latter dominated the degradation.  相似文献   

16.
The kinetics of oxygen electroreduction have been studied on a smooth platinum electrode coated with Nafion® in concentrated 85% H3PO4. The effects of Nafion® coatings of different thickness on O2 electroreduction at a smooth Pt rotating disk electrode with 85% phosphoric acid as the bulk electrolyte were examined. The kinetic current increases with increasing Nafion® film thickness while the diffusion limiting current decreases with increasing Nafion® film thickness. A O2 concentration profile model for the Pt/Nafion®/bulk electrolyte has been established, and this model can be used to explain the O2 reduction polarization results. The performance of Nafion®-modified, high surface area Pt/carbon air cathodes for use in the H2–air concentrated phosphoric acid fuel cell was also studied.  相似文献   

17.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

18.
A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac)3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy)3](ClO4)2 in acetonitrile was found to exhibit poor charge/discharge performance.  相似文献   

19.
The electrochemical reduction of carbon dioxide into formate was studied using gas diffusion electrodes (GDE) with Sn as electrocatalyst in order to overcome mass transport limitations and to achieve high current densities. For this purpose, a dry pressing method was developed for GDE preparation and optimized with respect to mechanical stability and the performance in the reduction of CO2. Using this approach, GDEs can be obtained with a high reproducibility in a very simple, fast, and straightforward manner. The influence of the metal loading on current density and product distribution was investigated. Furthermore, the effect of changing the electrolyte pH was evaluated. Under optimized conditions, the GDE allowed current densities up to 200 mA cm?2 to be achieved with a Faradaic efficiency of around 90 % toward formate and a substantial suppression of hydrogen production (<3 %) at ambient pressure. At higher current densities mass transport issues come into effect and hydrogen is increasingly produced. The corresponding cathode potential was found to be 1.57 V vs. SHE.  相似文献   

20.
《Ceramics International》2022,48(2):2031-2037
Structural design/doping strategy is an efficient method to prepare electrolytes with high oxygen ionic conductivity, but there is still hindrance for solid oxide fuel cell (SOFC) commercialization. Recent advances in semiconductor ionic materials have developed a novel strategy in designing low-temperature electrolyte materials. Here, a heterostructure composite of LSFC (La0.6Sr0.4Fe0.8Cu0.2O3-δ) and SDC (Sm0.2Ce0.8O2?δ) is developed. The LSFC-SDC composite exhibits a high ionic conductivity, >0.1S/cm at 550 °C. With symmetrical NCAL (Ni0.8Co0.15Al0.05LiO2-δ)-coated electrode, cells with SDC-LSFC electrolyte exhibit high open-circuit voltage (OCV), and achieve a significant power improvement (>1000 mW/cm2) compared with pure SDC electrolyte at 550 °C. The short-term stability result has proven the operating ability of SDC-LSFC electrolyte under fuel cell environment (H2/air). This work demonstrates a new developing route of low-temperature solid oxide fuel cell (LTSOFC), which is different from the conventional SOFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号