首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rate equations formalism is used to predict the population ratio of the Er3+ 4I13/2 levels involved in the 1.55 μm laser transition in the Yb:Er:CAS laser materials. An effective Yb → Er energy transfer, favourable to the Er3+ 1.55 μm laser emission, is demonstrated in this laser host. Indeed, the Yb → Er transfer and the Er → Yb back transfer rates are calculated to be 6 x 10−16 and 0.45 x 10−16 cm3 s−1, respectively. Attempts of codoping the system with Nd3+, Eu3+ and Ce3+ have been realised in order to increase the population of the Er3+ 4I13/2 laser emitting level. Best results are obtained with Ce3+ ion since in the sample containing 6 x 1020 Ce3+/cm3, the Er3+ 4I11/2 level lifetime is divided by a factor of 3 while the Er3+ 4I13/2 fluorescence lifetime remains unaffected. On the contrary, codoping with Nd3+ or Eu3+ ions simultaneously decreases the Er3+ 4I11/2 and 4I13/2 kinetics parameters. The role of the other parameters such as Yb/Er concentrations ratios is also discussed.  相似文献   

2.
The effect of radiation trapping on the emission properties of Er3+-doped tellurite and phosphate glasses has been investigated as the function of sample thickness and doping concentration. It was found that radiation trapping exists generally in two glass matrices, even at low doping concentration (0.1 mol% Er2O3). The larger effect of radiation trapping in tellurite glasses compared with phosphate glasses is due to its larger emission cross-section at 1.5 μm band and the spectral overlap between the emission and absorption spectra of Er3+: 4I13/2 ↔ 4I15/2transition. Due to radiation trapping, the measured lifetime of the Er3+: 4I13/2 level in tellurite glasses increases by about 11–37% with increasing the sample thickness at the different erbium doping concentration, while 6–17% for phosphate glasses. And the full-width at half maximum of fluorescence (FWHM) of Er3+: 4I13/2 → 4I15/2 transition in tellurite glasses increased by about 15–64% with increasing the sample thickness, while 11–55% for phosphate glasses. It caused a high overestimation on the figure of merits (FOM) for amplifier bandwidth (σe × FWHM).  相似文献   

3.
A complete spectroscopic investigation of energy transfer processes in oxyfluoride glass ceramics containing CaF2 nano-crystals doped with various amounts of Er3+ and Yb3+ was reported. An enhancement of the 1.53 μm emission and infrared to visible up-conversion fluorescence was confirmed experimentally due to efficient non-radiative energy transfer from Yb3+ to Er3+ ions concentrated in CaF2 nano-crystals. The efficiency of Yb3+ to Er3+ energy transfer in excess of 85% was obtained for 0.5 mol% Er3+/2.0 mol% Yb3+ co-doped glass ceramic. Using rate equation formulism, the coefficient of Yb3+ to Er3+ energy transfer was determined to be about 3.5 times higher than that of Er3+ to Yb3+ energy back transfer, which is sufficient to provide high 4I11/2 population of Er3+ to improve the fluorescence of the co-doped glass ceramics.  相似文献   

4.
In this paper, we report silica based planar waveguides doped with Er3+, and co-doped with GeO2 and Al2O3. These sol–gel derived planar waveguides were fabricated on SOS (silica on silicon) using multiple spin-coating and rapid thermal processing (RTP). Investigation has been made on their characteristics in terms of their application in optical amplification and lasing, including photoluminescence (PL), fluorescence lifetime, refractive index, propagation loss, surface roughness, Fourier transform infrared (FTIR) spectrum and X-ray diffraction (XRD) analysis. The propagation loss of a 20-layer planar waveguide was measured to be about 1.6 dB/cm for TE0 and 2.2 dB/cm for TM0 mode. A strong emission transition (4I13/24I15/2) at 1.536 μm with a lifetime of 3.6 ms has been obtained for an optimized molar composition of 90SiO2: 10GeO2: 20AlO1.5: 1ErO1.5.  相似文献   

5.
Low temperature infrared transmission studies of Nd3+ doped YVO4 were performed, under a magnetic field B c, in the 1800–8000 cm−1 range of the 4I9/24I11/2, 4I13/2, and 4I15/2 Nd3+ crystal-field transitions. Good agreement is obtained between the experimental and calculated g-factors. Frequencies of the satellites in the 4I9/24F3/2 transitions of the Nd3+ isolated ion confirm the presence of ferromagnetic interactions between pairs of coupled Nd3+ ions that lift the Kramers doublet degeneracies of their ground state and excited multiplets.  相似文献   

6.
Z.H. Zhu  M.J. Sha  M.K. Lei   《Thin solid films》2008,516(15):5075-5078
1 mol%Er3+–10 mol%Yb3+ codoped Al2O3 thin films have been prepared on thermally oxidized SiO2/Si(110) substrates by a dip-coating process in the non-aqueous sol–gel method from the hydrolysis of aluminum isopropoxide [Al(OC3H7)3] under isopropanol environment. Addition of N,N-dimethylformamide (DMF) as a drying control chemical additive (DCCA) into the sol suppresses formation of the cracks in the Er3+–Yb3+ codoped Al2O3 thin films when the rare-earth ion is doped with a high doping concentration. Homogeneous, smooth and crack-free Er3+–Yb3+ codoped Al2O3 thin films form at the conditions by a molar ratio of 1:1 for DMF:Al(OC3H7)3. A strong photoluminescence spectrum with a broadband extending from 1.400 to 1.700 µm centered at 1.533 µm is obtained for the Er3+–Yb3+ codoped Al2O3 thin films, which is unrelated to the addition of DMF. Controllable formation of the Er3+–Yb3+ codoped Al2O3 thin films may be explained by the fact that the DMF assisted the deprotonation process of Al–OH at the surfaces of gel particles, resulting in enhancement of the degree of polymerization of sols and improvement of the mechanical properties of gel thin films.  相似文献   

7.
Hai Guo   《Optical Materials》2007,29(12):1840-1843
In this work, the LaOBr:Er3+ (0.1%) powders were prepared by solid state reaction. The structural properties of LaOBr:Er3+ were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The results show that LaOBr:Er3+ has low phonon energy, which indicate that LaOBr:Er3+ may have high luminescent efficiency. Under excitation into 4I11/2 level of Er3+ ions by 980 nm laser, the two- and three-photon upconverted luminescence of LaOBr:Er3+ were recorded. The most intense emissions were come from the 2H11/2, 4S3/2 → 4I15/2 transitions. The upconversion mechanisms were studied in detail through laser power dependence, and results show that excited state absorption is responsible for the upconversion. The upconversion properties indicate that LaOBr:Er3+ may be used in upconversion phosphors.  相似文献   

8.
Rare earth ion (Nd3+, Er3+ and Tb3+)-doped alumina films were prepared by the sol–gel method using aqueous alumina sol. The effects of dopant concentration and treatment temperature on the optical properties, absorption and emission were examined for the doped films. Alumina films prepared by this method gave a high dopant concentration (0–15 mol% per alumina). Significant concentration quenching did not occur in this concentration range. The emissions from 5D3 and 5D4 of Tb3+-doped film reflected sensitively a matrix environment around Tb3+ ions. Er3+- and Nd3+-doped alumina films resonantly excited by cw Ti–sapphire laser (800 nm) showed upconversion emission at room temperature. The former gave 548 nm (4S3/24I15/2) and 640 nm (4F9/24I11/2) signals, and the latter 640 nm (4G7/24I11/2), which were dependent on alumina.  相似文献   

9.
The optical properties of the rare elements Tm3+, Ho3+ and Yb3+ were systematically investigated in various glasses. The Tm3+ doped aluminozircofluoride glass shows higher quantum efficiency, longer lifetime and stronger fluorescence intensity than Tm3+ doped YSGG crystal and other Tm3+ doped glasses for the 3H43H6 transition. Similar quantum efficiency, longer lifetime and stronger fluorescence intensity were also found in Ho3+ doped aluminozircofluoride glass for the 5I75I8 transition. The higher quantum efficiencies of Tm3+ and Ho3+ in aluminozircofluoride glass are due to the longer lifetime and the lower phonon energy. The fluorescence mechanisms and energy transfer in the Yb3+ -Tm3+ system, Yb3+ -Ho3+ system and Yb3+ - Tm3+ -Ho3+ system were studied. The very strong fluorescence intensities in the Yb3+ -Tm3+ system for Tm3+ and the Yb3+ -Tm3+ -Ho3+ system for Ho3+ which are 1.68 times that of Tm3+ doped YSGG crystal and 2.25 times that of Tm3+---Ho3+ codoped YSGG crystal are attributed to the efficient Yb3+ → Tm3+, Yb3+ → Ho3+ and Tm3+ → Ho3+ energy transfer processes. The fluorescence processes are described by cross relaxations of 2F5/23H53H43H62F7/2 and2F5/23H5 (or 2F5/25I63H5) → 3H45I75I83H62F7/2.  相似文献   

10.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

11.
The luminescence lifetime of the 0.01 mol.%–0.1 mol.% Er3+- and 0–20 mol.% Y3+-codoped Al2O3 powders prepared at a sintering temperature of 900°C in a non-aqueous sol-gel method has been investigated to explore the enhanced mechanism of photoluminescence properties of the Er3+-doped Al2O3 by Y3+ codoping. For the 0.1 mol.% Er3+–Y3+-codoped Al2O3 powders, the measured lifetime of Er3+ gradually increases with increasing Y3+ concentration. Consequently, codoping with 20 mol.% Y3+ leads to an increase in the measured lifetime from 3.5 to 5.8 ms. By comparing the measured lifetime for different Er3+ concentrations in the Al2O3 powders, the radiative lifetime of both the Er3+-doped and the Er3+–Y3+-codoped Al2O3 powders is estimated to be about 7.5 ms. Infrared absorption spectra indicate that Y3+ codoping does not change the –OH content in the Er3+–Y3+-codoped Al2O3 powders. The prolonged luminescence lifetime of the 4I13/2 level of Er3+ in Er3+-doped Al2O3 powders by Y3+ codoping is ascribed to the decrease in the energy transfer rate between the Er3+ ions and the Er3+ and –OH, respectively, due to the suppressed interaction between Er3+ ions.  相似文献   

12.
为了得到最优发光的薄膜材料成分参数,采用均匀设计和二次通用旋转组合设计相结合的方法建立发光强度与薄膜中氧含量和Ce3+ 离子掺杂浓度的回归方程,并用遗传算法求其取最大值时的解。用中频反应磁控溅射技术制备了相应成分的Al2O3:Ce非晶薄膜。在320nm光激发下,获得了较理想的发射光谱,对薄膜发光机理分析表明:薄膜的光致发光来自于Ce3+ 离子的5d1激发态向基态4f1的两个劈裂能级的跃迁。发光强度强烈的依赖于薄膜的掺杂浓度和氧元素含量。XPS检测表明,Al2O3:Ce薄膜中存在Ce3+ 。Ce3+ 含量和薄膜的化学成分是通过X射线散射能谱(EDS)测量的。薄膜试样的晶体结构应用X射线衍射分析。  相似文献   

13.
Absorption and emission spectra are given for Yb3+-doped Y2O3, Lu2O3 and Gd2O3 at room temperature. Y2O3 and Lu2O3 as close cubic matrices, show Yb3+ similar spectra different of Yb3+ in Gd2O3 monoclinic structure. Here, we use a new method to study and optimize the main spectroscopic properties with only one concentration gradient sample. Finally, assignments of Yb3+ Stark levels and Raman vibrations in Y2O3, Lu2O3 and Gd2O3 single crystal are given.  相似文献   

14.
Optical absorption and emission properties of Er and Er–Yb-doped phosphate glasses are investigated both at low and room temperature in the near infrared spectral region between 800 and 2000 nm, and the results are thoroughly discussed in connection with the expected transitions originating from the crystal-field split 4I15/2 and 4I13/2 levels of the Er3+ ion. Accurate measurements of the 4I13/2 fluorescence lifetimes and the determination of the stimulated emission cross section for the Er transition at 1.5 μm are also reported. Excited state absorption (ESA) from the metastable 4I13/2 level towards the higher energy levels is measured in the 450–1200 nm spectral region. The ESA absorption peaks are in good agreement with the positions of the higher states of the 4f11 Er3+ manifold.  相似文献   

15.
To obtain efficient upconversion laser glass, the optical properties of Tm3+ and Ho3+ were investigated in various glasses. Fluoride glass was selected as base glass for upconversion. The efficient upconversion fluorescences corresponding to the 1G43H6 and 3H43H6 transitions of Tm3+ and the 5S25I8 transition of Ho3+ were observed in Yb3+-Tm3+ and Yb3+-Ho3+ doped aluminozircofluoride glasses excited at 980 nm. The very stronge blue and green emission light can be observed visually. The upconversion processes observed were two-photon processes for 3F43H6, 5S25I8 transitions and three-photon processes for the 1G43H6 transition and can be described by a rate equation model. The energy transfer and energy back-transfer were analyzed in Yb3+-Tm3+ and Yb3+-Ho3+ systems. The relationship between emission intensity, pumping intensity and dopant concentrations is described using a rate equation model and shows good agreement with experiments. The dynamics of excited state ( ) is also analyzed with the diffusion-limited model based on Yokota-Tanimoto theory.  相似文献   

16.
Thin films of the system xAl2O3–(100 − x)Ta2O5–1Er2O3 were prepared by a sol–gel method and a dip-coating technique. The influences of the composition and the crystallization of the films on Er3+ optical properties were investigated. Results of X-ray diffraction indicated that the crystallization temperature of Ta2O5 increased from 800 to 1000 °C with increased values of x. In crystallized films, the intensities of the visible fluorescence and upconversion fluorescence tend to decrease with an increase in x values, due to the high phonon energy of Al2O3; the strongest fluorescence is observed in a crystallized film for x = 4 heat treated at 1000 °C. In amorphous films obtained by heat treatment at relatively low temperatures the Er3+ fluorescence could not be observed because strong fluorescence from organic residues remaining in the films thoroughly covered the Er3+ fluorescence. On the other hand, the Er3+ upconversion fluorescence in the amorphous films was observed to be stronger than that in the crystallized films. The strongest upconversion fluorescence is observed in an amorphous film for x = 75 heat treated at 800 °C.  相似文献   

17.
Cerium ion luminescence in crystalline hosts forms the basis of many blue phosphor and scintillator technologies. We report the synthesis of luminescent single crystals of cerium dicyanoargentate. The luminescence properties are characterized using both steady-state and time-resolved spectroscopy. The broad, overlapping dicyanoargentate and Ce3+ emissions are decomposed into three Gaussians, revealing the characteristic dicyanoargentate emission at 350 nm while the Ce3+ 5d–4f transitions are observed at 359 nm and 391 nm. Excitation measurements show that the 4f–5d Ce3+ absorption overlaps the 320 nm emission of the dicyanoargentate ions, leading to a strong coupling between the dicyanoargentate energy donors and Ce3+ acceptors. We conclude that the cerium is excited through an energy transfer process from the dicyanoargentate species, resulting in strong room temperature luminescence.  相似文献   

18.
Novel pure and cobalt-doped magnesium borate crystals (Mg3B2O6) have been grown successfully by the Czochralski technique for the first time. Crystal growth, X-ray powder diffraction (XRD) analysis, absorption spectrum, fluorescence spectrum as well as fluorescence decay curve of Co2+:Mg3B2O6 (MBO) were described. From the absorption peaks for the octahedral Co2+ ions, the crystal-field parameter Dq and the Racah parameter B were estimated to be 943.3 cm−1 and 821.6 cm−1, respectively. The fluorescence lifetime of the transition 4T1(4P) → 4T2 centered at 717 nm was measured to be 9.68 ms.  相似文献   

19.
A study is presented about Cr3+→Tm3+ energy transfers in Gd3Ga5O12 garnet at 10 K. By time-resolved spectroscopy and analysis of decay kinetics we determine the nature of the interaction and we show the existence of chromium-thulium pairs in which the chromium emission wavelength is shifted from 693.6 to 694 nm.  相似文献   

20.
以Y2O3、Eu2O3、Bi(NO3)3·H2O、浓HNO3、偏钒酸铵、氨水、无水乙醇和一缩二乙二醇为原料,采用聚乙烯吡咯烷酮(PVP)辅助水热法合成YVO4: Eu3+, Bi3+纳米颗粒。使用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(IR)和荧光光谱(FL)等手段对产品进行了表征和分析。结果表明:合成的样品为YVO4: Eu3+, Bi3+纳米颗粒,均具有四方晶相结构,其微结构随反应溶液的的pH值变化。YVO4: Eu3+, Bi3+纳米颗粒在619 nm处有较强的红光发射(电偶极跃迁5D07F2),在594 nm有较弱的橙光发射(磁偶极跃迁5D07F1)。随着Eu/Bi比值的增大材料的荧光先增强后减弱,在Eu/Bi比值为5时样品的红光发射最强。溶液的pH值影响YVO4: Eu3+, Bi3+纳米晶的发光强度,其中pH值为10时的样品其红光发射最强。并探讨了YVO4: Eu3+, Bi3+纳米晶的发光机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号