首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
This paper presents two new current differencing transconductance amplifiers (CDTAs)-based electronically tunable current-mode four-phase quadrature oscillators (QO). The proposed QOs consist of two CDTAs, one resistor and two grounded capacitors, respectively, which are suitable for monolithic integration. The condition of oscillation (CO) and frequency of oscillation (FO) can be independently controlled, and the FO can be electronically tunable by adjusting the bias current of the CDTA. Moreover, the QOs can provide four quadrature output currents at high-output-impedance nodes, which enable the QOs can be connected directly to the next stage without any impedance matching requirements. Cadence IC Design Tools 5.1.41 (Cadence Design Systems Inc., San Jose, CA) post-layout simulation results and experimental evidence are included to confirm the theory.  相似文献   

2.
This paper presents a first of its kind canonic realization of active RC (ARC) sinusoidal oscillator with non-interactive/independent tuning laws, which simultaneously provides buffered quadrature voltage outputs and explicit quadrature current outputs. The proposed circuit is created using a new active building block, namely the Z-copy controlled-gain current differencing buffered amplifier (ZC-CG-CDBA). The circuit uses three resistors and two grounded capacitors, and provides independent/non-interactive control of the condition of oscillation (CO) and the frequency of oscillation (FO) by means of different resistors. Other advantageous features of the circuit are the inherent electronic tunability of the FO via controlling current gains of the active elements and the suitability to be employed as a low-frequency oscillator. A non-ideal analysis of the circuit is carried out and experimental results verifying the workability of the proposed circuit are included.  相似文献   

3.
This paper presents a low-power, small-size, wide tuning-range, and low supply voltage CMOS current-controlled oscillator (CCO) for current converter applications. The proposed oscillator is designed and fabricated in a standard 180-nm, single-poly, six-metal CMOS technology. Experimental results show that the oscillation frequency of the CCO is tunable from 30 Hz to 970 MHz by adjusting the control current in the range of 100 fA to 10 µA, giving an overall dynamic range of over 160 dB. The operation of the circuit is nearly independent of the power supply voltage and the circuit operates at supply voltages as low as 800 mV. Also, at this voltage, with control currents in the range of sub-nano-amperes, the power consumption is about 30 nW. These features are promising in sensory and biomedical applications. The chip area is only 8.8×11.5 µm2.  相似文献   

4.
This paper presents a new circuit topology of millimetre-wave quadrature voltage-controlled oscillator (QVCO) using an improved Colpitts oscillator without tail bias. By employing an extra capacitance between the drain and source terminations of the transistors and optimising circuit values, a low-power and low-phase-noise (PN) oscillator is designed. For generating the output signals with 90° phase difference, a self-injection coupling network between two identical cores is used. The proposed QVCO dissipates no extra dc power for coupling, since there is no dc-path to ground for the coupled transistors and no extra noise is added to circuit. The best figure-of-merit is ?188.5, the power consumption is 14.98–15.45 mW, in a standard 180-nm CMOS technology, for 58.2 GHz center frequency from 59.3 to 59.6 GHz. The PN is ?104.86 dBc/Hz at 1-MHz offset.  相似文献   

5.
This article presents a new realisation of active RC sinusoidal oscillator with electronically tunable condition and frequency of oscillation (FO). As compared to the class of three resistors, two capacitors (3R-2C)-based canonic oscillators, the circuit proposed here uses only two resistors and two capacitors as the passive components and still provides non-interactive tuning laws for the condition of oscillation and the FO. The proposed circuit employs new bipolar programmable current amplifier as the active building block and is capable of simultaneously providing two explicit quadrature current outputs. SPICE simulation results have been included to verify the workability of the circuit as an oscillator and the tuning range of the FO.  相似文献   

6.
A systematic realization of third-order quadrature oscillator using a voltage-mode non-inverting lowpass filter and a voltage-mode inverting lossless feedback integrator is presented in this paper. The proposed circuit consists of two multiple-output differential voltage current conveyor transconductance amplifiers (MO-DVCCTAs), two grounded resistors and three grounded capacitors. The new circuit provides three quadrature voltage outputs, two high-impedance quadrature current outputs, and one high-impedance current output with controllable amplitude, simultaneously. When the input bias current of the first MO-DVCCTA is a modulating signal, the circuit can generate amplitude modulation or amplitude shift keying signals. The condition of oscillation and the frequency of oscillation can be controlled independently through grounded resistors. The proposed circuit only uses grounded capacitors and grounded resistors, which can be easily implemented as an integrated circuit. The experimental results and H-Spice simulation results are given to confirm the theoretical analysis.  相似文献   

7.
A new sub-1V and low power multiphase voltage-controlled oscillator (QVCO) with current-reused structure is proposed. The proposed core oscillator consists of two N-metal oxide semiconductor (NMOS) and P-metal oxide semiconductor (PMOS) transistors and an additional NMOS-only cross-coupled pair that enhances the effective negative transconductance and facilities the start-up condition at sub-1V supply voltages in modern nm CMOS technologies. In the proposed coupling scheme, the gate of cross-coupled transistors is used for coupling in an ‘in-phase−anti-phase’ manner. Parallel capacitors to the drain-source of transistors have been used for further enhancement of effective transconductance and thus lower power consumption; though the increase of parallel capacitors reduces the tuning range, indicating a trade-off in the proposed QVCO. The proposed quadrature oscillator is designed and simulated in a standard 0.18 μm RF-CMOS technology. The results of the simulation show that the QVCO has a 9% tuning range from 5.35 GHz to 5.88 GHz, and the phase noise is −119.6 dBc/Hz at 1-MHz offset from the 5.7 GHz carrier while consumes only 1.4 mW from a 0.85-V supply voltage; yielding an excellent figure-of-merit (FOM) of −193.3 dBc that is amongst the best FOMs. Several Monte Carlo and PVT analyses verify the robust performance of the QVCO.  相似文献   

8.
In this paper, a low phase noise and low power 5.15?GHz LC-tank VCO is presented and analysed. The phase noise achieved is??91,??116 and??126?dBc/Hz at 100?KHz, 1?MHz and 3?MHz offsets respectively from the carrier frequency of 5.15?GHz, with 1.8?V power supply voltage and giving a very low power consumption of about 2.5?mW by considering the proposed oscillator topology, which consumes less power than the classical oscillator using the traditional differential transconductor pair. A broad tuning range has been achieved by means of standard mode PMOS varactors. The tunability of the designed VCO covers 530?MHz, from 4.78?GHz up to 5.31?GHz. Predicted performance has been verified by analyses and simulations using ELDO-RF tool with 0.35?µm CMOS TSMC parameters.  相似文献   

9.
10.
This paper presents the design of a low power (LP) and a low noise figure (NF) quadrature demodulator with an on-chip frequency divider for quadrature local oscillator (LO) signal generation. The transconductance stage of the mixer is implemented by an AC-coupled self-bias current reuse topology. On-chip series inductors are employed at the gate terminals of the differential input transconductance stage to improve the voltage gain by enhancing the effective transconductance. The chip is implemented in 65-nm LP CMOS technology. The demodulator is designed for an input radio frequency (RF) band ranging from 10.25 to 13.75 GHz. A fixed LO frequency of 12 GHz down-converts the RF band to an intermediate frequency (IF) band ranging from DC to 1.75 GHz. From 10 MHz to 1.75 GHz the demodulator achieves a voltage conversion gain (VCG) ranging from 14.2 to 13.2 dB, and a minimum single-sideband NF (SSB-NF) of 9 dB. The measured third-order input intercept point (IIP3) is -3.3 dBm for a two-tone test frequency spacing of 1 MHz. The mixer alone draws a current of only 2.5 mA, whereas the complete demodulator draws a current of 7.18 mA from a 1.2 V supply. The measurement results for a frequency divider, which was fabricated individually, prior to being integrated with the quadrature demodulator, in 65-nm LP CMOS technology, are also presented in this paper.  相似文献   

11.
12.
This article presents the design, manufacturing and test results of an on-chip CMOS oscillator, using a ring-oscillator, VCO based architecture. The oscillator generates a configurable square waveform clock signal to be used internally or externally to the IC that integrates it, with very low area (320 transistors, 112?×?148?µm) and power overhead (975?µW). The oscillator is integrated in a mixed signal IC which has been qualified for space applications, at a commercial 250?nm process. It enables the standalone operation of the IC without external oscillator and gives the possibility to clock other components and systems. In addition, it reduces the noise interference at PCB and chip level, optimising the performance of sensitive analogue parts. It was validated by radiation tests according to ESA standards’ procedures that the oscillator's functionality and characteristics do not deteriorate with TID levels up to 1Mrad. This approach can be easily adjusted to a wide range of frequencies, while significantly reducing the cost and power budget of space qualified systems with small design effort trade-off.  相似文献   

13.
The design of a power-efficient second-order Δ/Σ modulator for voice-band is presented. At system level, a new single-loop, single-stage modulator is proposed. The modulator employs only one class-AB op-amp to realize a second-order noise shaping for voice-band applications. The modulator is designed in a 0.25μm standard CMOS process, and exhibits 86 dB dynamic range (DR) for a 4 kHz voice-bandwidth. The proposed modulator consumes 125μW from a 2.5 V supply. Aminghasem Safarian received the B.S. and M.S. degrees in electrical engineering from the Sharif University of Technology, in 2000, 2002, respectively. Since 2003 he is a research assistant at University of California, Irvine, working toward his Ph.D. degree in electrical engineering emphasizing on RF IC design for wireless communication systems. During the summer of 2005, he was with Broadcom Corporation, Irvine, CA, where he developed integrated receivers for RFID and WCDMA applications. Farzad Sahandiesfanjani was born in Tabriz, Iran in 1976. He received the B.S. and M.S. degrees in electronics from Sharif University of Technology, Tehran, Iran, in 1998 and 2000, respectively. The subject of his thesis was the design of 4th order cascade delta-sigma modulator for ADSL Analog Front End. From 1998 to 2003, he was with Emad Semicon Co., Tehran, Iran, where he designed circuits for voice application such as CODEC and SLIC chip. He also designed a 3rd order single loop class-D delta-sigma modulator for audio application. He joined Tripath Technology Inc., San Jose, CA, in 2003 and has been working on the design of analog and mixed-signal circuits for class-T audio power amplifier. He is also author of one patent for inductor-less switching audio power amplifier and also co-author of 3 more pending patents and 4 papers. Payam Heydari (S'98–M'00) received the B.S. and M.S. degrees (with honors) in electrical engineering from the Sharif University of Technology, in 1992, 1995, respectively. He received the Ph.D. degree in electrical engineering from the University of Southern California, in 2001. During the summer of 1997, he was with Bell-Labs, Lucent Technologies, Murray Hill, NJ, where he worked on noise analysis in deep submicron very large-scale integrated (VLSI) circuits. During the summer of 1998, he was with IBM T. J. Watson Research Center, Yorktown Heights, NY, where he worked on gradient-based optimization and sensitivity analysis of custom-integrated circuits. Since August 2001, he has been an Assistant Professor of Electrical Engineering at the University of California, Irvine, where his research interest is the design of high-speed analog, radio-frequency (RF), and mixed-signal integrated circuits. Dr. Heydari has received the 2005 National Science Foundation (NSF) CAREER Award, the 2005 IEEE Circuits and Systems Society Darlington Award, the 2005 Henry Samueli School of Engineering Teaching Excellence Award, the Best Paper Award at the 2000 IEEE International Conference on Computer Design (ICCD), the 2000 Honorable Award from the Department of EE-Systems at the University of Southern California, and the 2001 Technical Excellence Award in the area of Electrical Engineering from the Association of Professors and Scholars of Iranian Heritage (APSIH). He was recognized as the 2004 Outstanding Faculty at the EECS Department of the University of California, Irvine. His name was included in the 2006 Who's Who in America. Dr. Heydari is an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—part I. He currently serves on the Technical Program Committees of Custom Integrated Circuits Conference (CICC), International Symposium on Low-Power Electronics and Design (ISLPED), International Symposium on Quality Electronic Design (ISQED), and the Local Arrangement Chair of the ISLPED conference. He was the Student Design Contest Judge for the DAC/ISSCC Design Contest Award in 2003, the Technical Program Committee member of the IEEE Design and Test in Europe (DATE) from 2003 to 2004, and International Symposium on Physical Design (ISPD) in 2003. Mojtaba Atarodi received his Ph.D degree from USC (the University of Southern California, Los Angeles), in electrical engineering Electro-physics in 1993, his M.S from University of California at Irvine, and his B.SEE from the Tehran Polytechnic University with first Grade honor. Following his Ph.D completion, he was with Linear Technology Corporation from 1993 to 1996 as an analog design engineer. He has been with Sharif University of Technology as an Assistant and Visiting Professor since 1997. The Author of more than 50 technical journal and conference papers an a book on Analog CMOS IC Design, Dr Atarodi’s main research interests are analog and RF IC system, circuit, and signal processing design as well as analog synthesis tools. Having held several management and consulting positions during the last 15 years in the US industry, he holds one US patent in analog highly linear tunable Operational Transconductance Amplifiers and has applied for 5 more US patents as well.  相似文献   

14.
In this paper a novel ultra-high compliance, low power, very accurate and high output impedance current mirror/source is proposed. Deliberately composed elements and a good combination (for a mutual auto control action) of negative and positive feedbacks in the proposed circuit made it unique in gathering ultra-high compliances, high output impedance and high accuracy ever demanded merits. The principle of operation of this unique structure is discussed, its most important formulas are derived and its outstanding performance is verified by HSPICE simulation in TSMC 0.18 μm CMOS, BSIM3 and Level49 technology. Simulation results with 1 V power supply and 8 μA input current show an input and output minimum voltages of 0.058 and 0.055 V, respectively, which interestingly provide the highest yet reported compliances for current mirrors implemented by regular CMOS technology. Besides an input resistance of 13.3 Ω, an extremely high output resistance of 34.3 GΩ and −3 dB cutoff frequency of 210 MHz are achieved for the proposed circuit while it consumes only 42.5 μW and its current transfer error (at bias point) is the excellent value of 0.02%.  相似文献   

15.
设计了一种低功耗、宽频率调谐范围的伪差分环形压控振荡器(VCO).电路设计分为振荡环路设计和电流源设计两部分.在振荡器的振荡环路部分,提出了一种新颖的降低功耗的方法,即通过动态地调节接入振荡环路的锁存器,减小驱动电流,降低功耗;在振荡器的控制电源部分,采用gain-boost结构,设计了一款理想的可控双电流源,实现了振荡器的宽频率调谐范围.基于SMIC 65 nm工艺,在1.8V工作电压下,对振荡器进行了后仿验证.结果表明,在频率为900 MHz时,振荡器的功耗仅为3.564 mW;当控制电压在0.6~1.8 V变化时,振荡器的频率调谐范围可宽达0.495 ~1.499 GHz.  相似文献   

16.
The present paper deals with the optimal sizing of CMOS positive second-generation current conveyors (CCII+) employing an optimization algorithm. A contemporary non-gradient stochastic optimization algorithm, called bacterial foraging optimization (BFO) algorithm, has been employed to obtain the optimal physical dimensions of the constituent PMOS and NMOS transistors of the CCII+. The optimization problem has been cast as a bi-objective minimization problem, where we attempt to simultaneously minimize the parasitic X-port input resistance (RX) and maximize the high end cut-off frequency of the current signal (fci). The results have been presented for a large selection of bias currents (I0) and our proposed algorithm could largely outperform a similar algorithm, recently proposed, employing particle swarm optimization (PSO) algorithm and also the differential evolution (DE) algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号