首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Optical properties of InAs1−xNx/In0.53Ga0.47As (hereafter, abbreviated as InAsN/InGaAs) single quantum wells (SQWs) grown on InP substrates by gas source molecular-beam epitaxy are studied using photoluminescence (PL) measurements. By comparing the low-temperature PL spectra of InAs/InGaAs and InAsN/InGaAs SQWs, InAs and InAsN phases are found to coexist in the InAsN layer. Such serious alloy inhomogeneities result in obvious exciton localization by potential irregularities. The blue shift of the PL peak after rapid thermal annealing (RTA) is found to originate mainly from As-N interdiffusion inside the well layer. According to the temperature-dependent PL results, uniformity of the InAsN layer can be effectively improved by RTA, and the exciton localization is, thus, relieved. Comparison of luminescence quenching and excitation-power-dependent PL behavior between the QWs with and without nitrogen content suggests that the quality of the QW is degraded by the introduction of nitrogen, and the degradation can only be partially recovered by post-growth RTA.  相似文献   

2.
The growth of InxGaj1−xAs (x = 0.13–0.25) on GaAs by chemical beam epitaxy (CBE) and laser-modified CBE using trimethylindium (TMIn), triethylgallium (TEGa), and tris-dimethylaminoarsenic (TDMAAs) has been studied. Reflection high-energy electron diffraction measurements were used to investigate the growth behavior of InGaAs at different conditions. X-ray rocking curve and lowtemperature photoluminescence (PL) measurements were used to characterize the InGaAs/GaAs pseudomorphic strained quantum well structures. Good InGaAs/GaAs interface and optical property were obtained by optimizing the growth condition. As determined by the x-ray simulation, laser irradiation during the InGaAs quantum well growth was found to enhance the InGaAs growth rate and reduce the indium composition in the substrate temperature range studied, 440–500°C, where good interfaces can be achieved. These changes, which are believed to be caused by laser-enhanced decomposition of TEGa and laser-enhanced desorption of TDMAAs, were found to depend on the laser power density as well. With laser irradiation, lateral variation of PL exciton peaks was observed, and the PL peaks became narrower.  相似文献   

3.
High quality piezoelectric strained InGaAs/GaAs multi-quantum well structures on (111)B GaAs substrates have been grown by solid-source molecular beam epitaxy in a PIN configuration. 10K photoluminescence (PL) shows narrow peaks with widths as low as 3 meV for a 25-period structure while room temperature (RT) PL shows several higher order peaks, normally forbidden, indicating breaking of inversion symmetry by the piezoelectric field. Furthermore, both the 10K PL peak position and the form of the RT PL spectra depend on the number of quantum wells within the intrinsic region, suggesting that the electric-field distribution is altered thereby. Diodes fabricated from these structures had sharp avalanche breakdown voltages (Vbd) and leakage currents as low as 8 × 10−6 A/cm2 at 0.95 Vbd, indicating quality as high as in (100) devices. On leave from: Department de Ingeniera Electronica, Universidad Politecnica de Madrid, Madrid, Spain.  相似文献   

4.
In this paper, we present a technological process that can be used to prepare strain-relaxed InAsP/InGaAs bilayer membranes, 0.8% lattice mismatched to InP substrates, with diameters up to 300 μm. It is shown that high-quality thick In0.65Ga0.35As layers can be grown fully relaxed on these membranes, without any structural defect, as demonstrated by atomic force microscopy (AFM), transmission electron microscopy (TEM), and photoluminescence (PL) characterizations. The critical thickness of InAs layers grown on InAs0.25P0.75 templates is enhanced from 15 ? to 60 ? when compared to InP substrates.  相似文献   

5.
The polarity control of ZnO films grown on (0001) Al2O3 substrates by plasma-assisted molecular-beam epitaxy (P-MBE) was achieved by using a novel CrN buffer layer. Zn-polar ZnO films were obtained by using a Zn-terminated CrN buffer layer, while O-polar ZnO films were achieved by using a Cr2O3 layer formed by O-plasma exposure of a CrN layer. The mechanism of polarity control was proposed. Optical and structural quality of ZnO films was characterized by high-resolution X-ray diffraction and photoluminescence (PL) spectroscopy. Low-temperature PL spectra of Zn-polar and O-polar samples show dominant bound exciton (I8) and strong free exciton emissions. Finally, one-dimensional periodic structures consisting of Zn-polar and O-polar ZnO films were simultaneously grown on the same substrate. The periodic inversion of polarity was confirmed in terms of growth rate, surface morphology, and piezo response microscopy (PRM) measurement.  相似文献   

6.
The effect of growth temperature of the AlGaAs spacer layer on mobility in a two-dimensional electron gas μ e in single-side δ-doped pseudomorphic AlGaAs/InGaAs/GaAs transistor structures with a high electron mobility is studied experimentally. The energy-band diagram is analyzed using a self-consistent calculation. In order to study the electronic transport properties, an optimized structure in which there is no parallel conduction over the doped layer was chosen. It is shown that, in optimized structures, the mobility μ e increases by 53% at T = 300 K and by 69% at T = 77 K as the growth temperature increases from 590 to 610°C, with the other parameters and the growth conditions remaining the same. It is assumed that this behavior is related to an improvement in the structural quality of the AlGaAs spacer layer and the AlGaAs/InGaAs/GaAs heteroboundary.  相似文献   

7.
The radiation response of In0.5Ga0.5P, GaAs, In0.2Ga0.8As, and In0.3Ga0.7As single‐junction solar cells, whose materials are also used as component subcells of inverted metamorphic triple‐junction (IMM3J) solar cells, was investigated. All four types of cells were prepared using a simple device layout and irradiated with high‐energy electrons and protons. The essential solar cell characteristics, namely, light‐illuminated current–voltage (LIV), dark current–voltage (DIV), external quantum efficiency (EQE), and two‐dimensional photoluminescence (2D‐PL) imaging were obtained before and after irradiation, and the corresponding changes due to the irradiations were compared and analyzed. The degradation of the cell output parameters by electrons and protons were plotted as a function of the displacement damage dose. It was found that the radiation resistance of the two InGaAs cells is approximately equivalent to that of the InGaP and GaAs cells from the materials standpoint, which is a result of different initial material qualities. However, the InGaAs cells show relatively low radiation resistance to electrons especially for the short‐circuit current (I sc). By comparing the degradation of I sc and EQE, data, It was confirmed that the greater decrease of minority‐carrier diffusion length in InGaAs compared with InGaP and GaAs causes severe degradation in the photo‐generation current of the InGaAs bottom subcells in IMM3J structures. Additionally, it was found that the InGaP and two InGaAs cells exhibited equivalent radiation resistance of V oc, but radiation response mechanisms of V oc are thought to be different. Further analytical studies are necessary to interpret the observed radiation response of the cells. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

8.
By monitoring the cyclic behavior of surface photoabsorption (SPA) reflectance changes during the growth of GaAs at 650°C and with sufficient H2 purging time between the supply of trimethylgallium and AsH3, we have been able to achieve controlled growth of GaAs down to a monolayer. Our results show, as confirmed by photoluminescence (PL) measurements, the possibility of growing highly accurate quantum well heterostructures by metalorganic chemical vapor deposition at conventional growth temperatures. We also present our PL measurements on the InGaAs single quantum wells grown at this temperature by monitoring the SPA signal.  相似文献   

9.
In this paper, we report the effect of using a group-V residual source evacuation (RSE) time on the interfaces of InGaAs/lnGaAsP quantum wells (QWs) grown by gas-source molecular beam epitaxy. High-resolution x-ray rocking curve and low-temperature photoluminescence (PL) were used to characterize the material quality. By optimizing the RSE time, a PL line width at 15K as narrow as 6.6 meV is observed from a 2 nm wide single QW, which is as good as or better than what has been reported for this material system. Very sharp and distinct satellite peaks as well as Pendellosung fringes are observed in the x-ray rocking curves of InxGa1−xAs/InxGa1−xASyP1−y multiple QWs, indicating good crystalline quality, lateral uniformity, and vertical periodicity. Theoretical considerations of the PL linewidths of InxGa1−xAs/InxGa1−xASyP1−y single QWs show that for QW structures grown with the optimized RSE time, the PL linewidth is mainly due to alloy scattering, whereas the contribution from interface roughness is small, indicating a good interface control.  相似文献   

10.
Material quality is an essential prerequisite and a major challenge for the fabrication of high-power, 980-nm, strained-quantum-well (SQW) InGaAs lasers. We report our work aimed at metal-organic chemical vapor deposition (MOCVD) growth optimization and epitaxial quality analysis of various graded-index separate confinement heterostructure (GRINSCH) QW AlGaAs/InGaAs laser structures. Systematic investigation of doping level control and minimization of oxygen incorporation in AlGaAs were performed. Background oxygen levels of 1015 cm−3 were obtained with n-(Si) and p-(C) doping concentrations as high as 1 × 1018 cm−3 and 3 × 1018 cm−3, respectively, for Al0.4Ga0.6As layers. Double-crystal x-ray (DCXR), room-temperature photoluminescence (PL) mapping, Hall effect measurements, and secondary ion-mass spectroscopy (SIMS) techniques were used to evaluate material quality. A record, multimode, pulsed output power of 52.1 W has been obtained from 100-μm × 2-mm broad-stripe lasers made from these materials. The devices demonstrate low threshold current, low cavity losses, and kink-free light-current characteristics.  相似文献   

11.
The influence of the GaAs cap layer thickness on the luminescence properties in strained In0.20Ga0.80As/GaAs single quantum well (SQW) structures has been investigated using temperature-dependent photoluminescence (PL) spectroscopy. The luminescence peak is shifted to lower energy as the GaAs cap layer thickness decreases, which demonstrates the effect of the GaAs cap layer thickness on the strain of InGaAs/GaAs single quantum wells (SQW). We find the PL quenching mechanism is the thermal activation of electron hole pairs from the wells into the GaAs cap layer for the samples with thicker GaAs cap layer, while in sample with thinner GaAs cap layer exciton trapping on misfit dislocations is dominated.  相似文献   

12.
InP-based InGaAs/InAlAs ridge quantum wires were successfully fabricated by our new approach using selective molecular beam epitaxy (MBE). As the starting structures, array of InGaAs ridge structures composed of smooth (311)A facets were formed by MBE on mesa-patterned InP substrates. Prior to actual fabrication of the wires, MBE growth characteristics of In0.53Ga0.47As and In0.52Al0.48As layers on the starting structure were studied in detail. The results of growth experiments were then successfully applied to the fabrication of InGaAs ridge quantum wires with high spatial uniformity. Low temperature cathodoluminescence spectrum measured in response to spot excitation of wire region showed a strong light emission whose analysis indicated that it originates from InGaAs ridge quantum wire itself. In photoluminescence measurements, the emission from the wire had strong intensity even at room temperature, indicating that the wire crystal possesses excellent bulk and interface quality, and are largely free from nonradiative recombination centers.  相似文献   

13.
We present a comprehensive study of the structural and emission properties of self-assembled InAs quantum dots emitting at 1.3 μm. The dots are grown by molecular beam epitaxy on gallium arsenide substrates. Room-temperature emission at 1.3 μm is obtained by embedding the dots in an InGaAs layer. Depending on the growth structure, dot densities of 1-6×1010 cm-2 are obtained. High dot densities are associated with large inhomogeneous broadenings, while narrow photoluminescence (PL) linewidths are obtained in low-density samples. From time-resolved PL experiments, a long carrier lifetime of ≈1.8 ns is measured at room temperature, which confirms the excellent structural quality. A fast PL rise (τrise=10±2 ps) is observed at all temperatures, indicating the potential for high-speed modulation. High-efficiency light-emitting diodes (LEDs) based on these dots are demonstrated, with external quantum efficiency of 1% at room temperature. This corresponds to an estimated 13% radiative efficiency. Electroluminescence spectra under high injection allow us to determine the transition energies of excited states in the dots and bidimensional states in the adjacent InGaAs quantum well  相似文献   

14.
《Microelectronics Journal》1999,30(4-5):455-459
We review the recent advances in the fabrication and properties of GaAs/AlGaAs and InGaAs/GaAs quantum well (QW) structures grown on (111)A GaAs substrates by atmospheric pressure metalorganic vapor phase epitaxy (MOVPE). We show that a 25-period GaAs/AlGaAs multi-QW (MQW) structure was fabricated with good crystal quality, high photoluminescence (PL) emission intensity and monolayer (ML) interfacial roughness. A PL full width at half maximum (FWHM) of 10.5 meV was achieved for a 25-period MQW with a well width of 44 Å. This is the narrowest linewidth reported to date for any similar structures grown on (111)A or B substrates by any growth technique. We also report the properties of an InGaAs/GaAs single quantum well structure grown on (111)A GaAs. For this structure, the PL FWHM value was 9.1 meV, corresponding to a 1 ML interfacial roughness for a well width of 41 Å. This is the first demonstration of an InGaAs/GaAs quantum well structure grown on (111)A or (111)B GaAs by MOVPE.  相似文献   

15.
In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs’ PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.  相似文献   

16.
By means of in situ arsenic/phosphorus partial pressure control, the metastabilization of transitional surface structures during the coherent reformation and flattening of InGaAs(P) dots has been achieved. Since coherently grown dots are maintained by strain accumulated between the dots and a sublayer, the in situ replacement of arsenic/phosphorus in the several topmost monolayers changes the surface lattice parameter of the dots, and a drastic change in surface structure (the flattening of the dots or their reformation) is induced. The transitional surfaces being metastabilized were observed ex situ by a high-resolution scanning electron microscope and an atomic force microscope, and the process of dot reformation/flattening was made clear. To show the application of in situ phosphidation (the replacement of arsenic by phosphorus) of dots, the step by step reformation of the dots was demonstrated using an AsH3 pulse supply onto the flattened surface. The fabrication of graded-composition dots was attempted by the pulse supply of TEGa or TMIn during the step by step reformation of dots, resulting in a large difference in the intensity of photoluminescence (PL) between Ga-added and In-added dots. Furthermore, the temperature dependence of PL from the transitional structure between dots and a flat surface has been investigated by means of capping the structure with GaAs overgrowth. The effects of dot phosphidation on PL are discussed through comparison with unphosphidated dots.  相似文献   

17.
This paper attempts to control and optimize the interface atomic profiles of a novel surface passivation scheme for InGaAs nanostructures, using a silicon interface control layer (ICL). An in-situ x-ray photoelectron spectroscopy characterization technique was used to establish a process sequence that satisfies the conditions of maintenance of pseudomorphic matching to InGaAs, prevention of direct oxidation of InGaAs, and formation of a good SiO2/Si interface with minimal suboxide components. It is shown that the above conditions can be satisfied by a new process that is a formation of the thermal SiO2 at the SiO2-Si interface by repetition of deposition/oxidation/annealing cycle. A large reduction of interface state density (Nss) was realized by the optimization of the new process, resulting in a minimum Nss of 4 × 1011 cm−2 eV−1. The silicon ICL technique was successfully applied to the passivation of InGaAs wire structures.  相似文献   

18.
用低压MOCVD(LP-MOCVD)生长三种不同的InGaAs/GaAs应变层量子阱材料,其中两种含AlGaAs限制层。结果表明,AlGaAs限制层对量子阱的发光强度影响很大,与没有AlGaAs限制层的结果相比,带AlGaAs限制层的结构的发光强度要强一个数量级以上。在低温(18K)PL光谱图中,我们看到,除了存在主峰以外,在主峰两侧还各有一个子峰,这些子峰可能与量子阱的质量有关。  相似文献   

19.
The results of a comprehensive study by the methods of IR absorption, Raman scattering, photoluminescence (PL), and electron spin resonance (ESR) of SiOx films prepared by thermal evaporation of SiO in a vacuum are presented. The nature of structural transformations occurring on annealing the films is determined. Annealing in the temperature range 300–600°C gives rise to a PL band at 650 nm, presumably related to structural defects in SiOx film. Raising the annealing temperature further leads to healing of such defects and quenching of the PL band. Silicon precipitates pass from the amorphous to the crystalline state on being annealed at T ann=1100°C, which gives rise to a new PL band at 730 nm. ESR spectra of P b centers were recorded at the interface between randomly oriented silicon nanocrystallites and SiO2.  相似文献   

20.
We have performed an extensive study of GaAs, Al0.22Ga0.78As, and In0.16Ga0.84As grown using tertiarybutylarsine (TBA) in an ultra-high purity metalorganic chemical vapor deposition multi-wafer reactor. Key results include: high purity TBA AlGaAs layers with the lowest p-type carrier concentrations (4 × 1014 cm−3) reported to date; 4K photoluminescence bound exciton linewidths as narrow as 4.3 meV; C, O. Si, and S concentrations below the secondary ion mass spectrometry detection limit; and InGaAs/GaAs quantum wells with 20K PL linewidths as narrow as 3.5 meV. We also observe a strong dependence of growth rates and doping efficiency on group-V partial pressure, possibly due to a competition between excess group-V species and group-Ill or Si species for group-Ill surface sites. Finally, we demonstrate record uniformity using TBA with an AlGaAs thickness variation of only ±1.4% across a 4 inch wafer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号