首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 953 毫秒
1.
在深海能源土、岩石风化等问题离散元模拟中,颗粒间胶结物的增减将对材料宏观力学特性有显著影响,因此需要建立考虑胶结厚度和宽度的胶结模型。针对离散元理论中粒间真实形状胶结物在粒间力作用下的刚度和强度确定问题,基于原始的Dvorkin理论,给出高精度的胶结力学响应理论解。求解中将位移函数对称化,提出一种修正位移试函数的方法,提高了二维颗粒微观胶结模型应力场的对称性和精度,经验证解答在定性和定量上符合有限元模拟结果。根据所得解答对胶结物几何参数进行了分析,讨论了胶结宽度和厚度对胶结刚度的影响,并给出了针对一般常见材料的刚度拟合公式。采用双剪统一强度理论分析了脆性和塑性胶结材料的初始破坏区位置,给出拉/压剪复合受力状态的强度包线。本文解答可方便快捷地获得胶结模型的大量力学响应信息,可作为试验数据的验证和补充,协助建立胶结物在复杂荷载作用下的破坏判据,进而建立完整的离散元胶结模型。  相似文献   

2.
在连续介质力学有限差分数值模拟的基础上,选取有代表性的局部区域进行基于有限差分与离散元的离散-连续耦合分析。采用上述方法模拟了某尾矿坝边坡在尾矿冲填前后潜在滑移带附近的宏细观力学特征。模拟结果显示,对于耦合和非耦合模型中的连续域两种方法的计算结果基本一致,但离散域的存在可以对滑移带形成过程的细观力学特征,如力链分布、土体细观组构发展等进行分析,研究边坡破坏的细观机理。研究表明,在滑移带形成过程中,滑移带内外土体各向异性的发展明显不同:随着荷载的施加,潜在滑移带内土体颗粒发生了较明显的位移,应力主方向发生了明显转动。颗粒的转动改变了带内组构的分布,并逐渐形成剪切滑移带,造成边坡失稳。滑带外土体虽然应力主方向发生了一定的偏转,但剪应力变化不大。采用的离散-耦合分析方法可以分析边坡在渐进破坏过程中滑移带形成的细观力学机理。  相似文献   

3.
根据近期胶结铝棒接触力学特性的实测结果,提炼出用于模拟胶结砂土粒间胶结作用的胶结接触模型,并将该模型引入二维离散元商业软件PFC2D。通过对不同胶结强度和不同围压下胶结砂土的平面应变双轴压缩试验的离散元模拟,分析了理想胶结砂土的宏观力学特性及其剪切带的形成规律。结果表明:相比同一孔隙比的无胶结试样,胶结试样具有更高的峰值强度、显著的应变软化和剪胀现象以及明显的剪切带,宏观力学特性与其胶结接触微观力学机理密切相关,模拟结果与已有室内试验结果具有规律上的一致性;由胶结试样内部的微观信息统计可知,胶结试样剪切带的形成一般在其峰值强度之后,且剪切带的形成是试样变形、胶结破坏、孔隙比、平均纯转动率和位移场等微观参量局部化的综合表现。  相似文献   

4.
刘武  过申磊  陆倩  郑连阁  袁文俊 《岩土工程学报》2021,(7):1306-1314,后插8
从细观力学角度出发,充分考虑水-力耦合条件下岩石细观特征及其演化,结合热力学理论,建立基于TOUGHREACT的岩石细观水力损伤耦合数值模型.模型可较好地考虑任意微裂纹滑移剪胀、损伤扩展和法向压缩闭合等细观力学行为对岩石宏观变形破坏、渗透性演化和水流运动过程的影响.采用室内煤岩注水破坏试验成果对数值模型的正确性和有效性...  相似文献   

5.
《土工基础》2017,(2):188-192
基于离散元法,用不同尺寸的球体代表土壤颗粒,添加平行粘连模型模拟颗粒间的相互作用,对沙土直剪试验进行数值研究;为了校正和验证数值模型和输入参数,将剪切结果与标准直剪试验所得的抗剪强度进行对比,结论表明离散元数值模型的仿真结果和试验能够很好吻合;还详细讨论了剪切过程中土壤颗粒的运动情况,以及剪切盒形状、剪切速度、法向载荷对剪切曲线和颗粒料床孔隙率的影响。  相似文献   

6.
蒋明镜 《岩土工程学报》2007,29(9):1281-1288
讨论了用于触探试验分析的粒状材料本构模型。利用二维离散元程序,对粒状材料触探试验进行数值模拟,研究了地基中的应力路径与应力场,然后基于土力学中的最新知识,分析总结出试验中粒状材料的主要力学特点。研究表明,在粒状材料的触探试验分析中,其本构模型应当包含4个主要特性:剪胀性、率相关性、颗粒破碎和非共轴性。  相似文献   

7.
结构性土体通常指粒间含有胶结的土体,可看成一种特殊的胶结颗粒材料,探明结构性土体的胶结破损演化规律是加深结构性土体宏微观力学性质认识及建立结构性土本构模型的关键。由于试验手段难以定量获取胶结破损信息,通过离散单元法分析了结构性土体的胶结破损演化规律。首先采用相对完备的胶结接触模型建立了结构性土体离散元试样,接触模型考虑了颗粒及胶结物质的抗转动和抗扭转作用以及胶结尺寸对刚度和强度的影响;然后开展了结构性土侧限压缩、等向压缩、等应力比压缩以及常规三轴和真三轴试验的离散元数值分析,再现了结构性土的主要宏观力学特征;在此基础上的胶结破损演化分析表明胶结破损参量B0演化具有明显的应力路径相关性,而新提出的破损参量Bσ应力路径相关性低,通过Bσ与等效塑性应变的指数函数关系,可以描述结构性土体的胶结破损演化情况。  相似文献   

8.
基于破碎能耗的粗颗粒料本构模型   总被引:1,自引:0,他引:1  
现有的考虑颗粒破碎的本构模型主要是通过引入颗粒破碎率来反映颗粒破碎对材料力学性质的影响,由于颗粒破碎率只是粗颗粒料在受外荷作用下的一种外部表现,在测定的其它参数中实际上已经包含了颗粒破碎的影响,因此为反映颗粒破碎而引入颗粒破碎率的方法是不合适的。基于Ueng和Chen剪胀方程,通过分析三轴剪切试验过程中的能量平衡,提出了考虑颗粒破碎的剪胀方程及其参数确定方法。将Rowe剪胀方程和考虑颗粒破碎的剪胀方程分别引入Duncan E-非线性模型和沈珠江“南水”双曲服面模型,通过与三轴CD剪切试验成果的对比分析和工程实例的有限元数值分析,表明所提模型可较好地反映材料的剪胀特性。如采用弹塑性模型尚能反映颗粒破碎在增加变形的同时降低了材料的强度等特性,验证了所提模型的合理性和可靠性。与现有的考虑颗粒破碎的本构模型相比,所提模型具有试验工作量小、参数少和参数物理意义明确等优点,便于在工程中推广使用。  相似文献   

9.
结构性砂土粒间胶结效应的二维数值分析   总被引:1,自引:0,他引:1  
将理想胶结颗粒接触力学特性的测试结果引入到离散元胶结接触模型中,对结构性砂土粒间胶结效应进行离散元数值模拟。首先,胶结颗粒被理想化为两铝棒在指定部位形成胶结,通过一系列加载试验(拉伸、压缩、压剪)获得胶结铝棒在不同应力路径下的接触力学响应。随后,将测试结果提炼总结后引入到自行开发的二维离散元程序 NS2D 中,用以模拟不同初始密度和胶结强度的结构性砂土等向压缩试验。最后,通过与人工胶结砂土的试验数据进行比较,对文中的数值模拟结果进行验证。研究表明:离散元数值模拟能够有效的捕捉结构性砂土的主要力学特性,即屈服强度和体积模量均随初始密度和胶结强度的变化而变化,且胶结试样的屈服强度与试样内部颗粒间胶结点破坏率密切相关。  相似文献   

10.
根据实际储层砂岩的物性和射孔试验特征,从岩土力学的角度基于柱坐标系建立三维颗粒流(PFC3D)数值模型。综合考虑流体压力梯度力和拖曳力产生的流固耦合效应,运用几何学方法研究油井出砂过程中的砂岩模型变化。数值计算与理论分析比较可知流体运动效应不可忽略,两者的应力分布曲线相吻合,验证了数值模型的可行性和适用性。另外,外界条件一定时,砂岩模型的应力分布、黏结颗粒性态、颗粒位移和流体对单颗粒作用力结果显示不同的单元划分对数值计算结果的影响不大,说明该数值模型的收敛性和稳定性。由此可见,提出的三维数值模型能较好地反映砂岩出砂过程中的宏细观力学特性,为准确理解砂岩出砂的力学机理提供了重要的研究思路和研究手段。  相似文献   

11.
A numerical and an analytical model were developed to predict the volatile organic compound (VOC) emission rate from dry building materials. Both models consider the mass diffusion process within the material and the mass convection and diffusion processes in the boundary layer. All the parameters, the mass diffusion coefficient of the material, the material/air partition coefficient, and the mass transfer coefficient of the air can be either found in the literature or calculated using known principles.

The predictions of the models were validated at two levels: with experimental results from the specially designed test and with predictions made by a CFD model. The results indicated that there was generally good agreement between the model predictions, the experimental results, and the CFD results. The analytical and numerical models then were used to investigate the impact of air velocity on emission rates from dry building materials. Results showed that the impact of air velocity on the VOC emission rate increased as the VOC diffusion coefficient of the material increased. For the material with a diffusion coefficient >10−10 m2/s, the VOC emission rate increased as the velocity increased; air velocity had significant effect on the VOC emission. For the material with a VOC diffusion coefficient <10−10 m2/s, the VOC emission rate increased as the velocity increased only in the short-term; <24 h. In the medium to long-term time range, the VOC emission rate decreased slightly as the air velocity increased; velocity did not have much impact on these materials. Furthermore, the study also found that the VOC concentration distribution within the material; the VOC emission rate and the VOC concentration in the air were linearly proportional to the initial concentration. However, the normalized emitted mass was not a function of the initial concentration: it was a function of the properties of the VOC and the material.  相似文献   


12.
不同于岩土弹塑性模型和经验回归模型,提供了一个基于颗粒固体流体动力学的热力学本构模型。该模型通过对岩土颗粒固体的弹性弛豫和颗粒熵运动等耗散机制的定量描述,可以模拟土体的非线性硬化、软化等宏观力学行为,尤其适用于主应力旋转土体累积塑性应变的模拟。纯主应力旋转条件下杭州黏土的模拟结果表明:即使不改变土体的主应力大小,纯主应力方向的旋转依然会引起土体的非弹性变形的积累。在主应力旋转过程中,土体的应变方向与应力方向并不一致,存在明显的非共轴现象。并且应变峰值的出现明显落后于应力峰值,应力–应变关系曲线存在较大的滞回圈,表明纯主应力旋转过程中也存在能量耗散,并非完全弹性过程。模型分析结果符合现有的试验结论。  相似文献   

13.
This paper presents a numerical investigation on the strain localization of an idealized sand in biaxial compression tests using the distinct element method (DEM). In addition to the dilatancy and material frictional angle, the principal stress field, and distributions of void ratio, particle velocity, and the averaged pure rotation rate (APR) in the DEM specimen are examined to illustrate the link between microscopic and macroscopic variables in the case of strain localization. The study shows that strain localization of the granular material in the tests proceeds with localizations of void ratio, strain and APR, and distortions of stress field and force chains. In addition, both thickness and inclination of the shear band change with the increasing of axial strain, with the former valued around 10–14 times of mean grain diameter and the later overall described by the Mohr-Coulomb theory.  相似文献   

14.
This paper presents a numerical investigation on the strain localization of an idealized sand in biaxial compression tests using the distinct element method (DEM). In addition to the dilatancy and material frictional angle, the principal stress field, and distributions of void ratio, particle velocity, and the averaged pure rotation rate (APR) in the DEM specimen are examined to illustrate the link between microscopic and macroscopic variables in the case of strain localization. The study shows that strain localization of the granular material in the tests proceeds with localizations of void ratio, strain and APR, and distortions of stress field and force chains. In addition, both thickness and inclination of the shear band change with the increasing of axial strain, with the former valued around 10–14 times of mean grain diameter and the later overall described by the Mohr-Coulomb theory.  相似文献   

15.
Surface manifestations of earthquake fault rupture are strongly affected by the dilatant response of the soil deposit overlying the bedrock fault displacement. The granular material’s in-situ void ratio and effective confining stress affect its dilatancy, and hence, its stress-strain response and ductility. Distinct element method (DEM) assemblages of 3D, non-spherical particles are prepared with different void ratio distributions, and their dilatancy is characterized using direct shear test simulations. DEM simulations capture the response of sand in centrifuge experiments of earthquake fault rupture propagation. Macro-scale mechanisms of ground deformation and micro-scale mechanisms of shear band formation during dip-slip fault rupture propagation are analyzed through particle rotations, homogenized strains, frictional dissipation, and particle displacements. The brittle and ductile responses of granular media undergoing fault rupture are related to changes in the coordination numbers in each particle assemblage. The deformational characteristics of a metastable fabric in the loosest particle assemblages and a stable fabric in the densest particle assemblages are revealed through the accumulation of energy dissipated through friction. The normalized strong contact forces are also greater in magnitude in the loosest particle assemblages and greater in number in the densest assemblages.  相似文献   

16.
《Soils and Foundations》2012,52(4):644-657
It is well known that particle crushing plays a critical role in the mechanical behavior of granular soils. Understanding energy dissipation under the influence of particle breakage is of key importance to the development of micromechanics-based constitutive models for sands. This paper reports the original results of the energy input/dissipation of an idealized crushable soil using 3D DEM simulations. Particle breakage is modeled as the disintegration of the synthetic agglomerate particles which are made up of parallel-bonded elementary spheres. A parametric study is performed to fully investigate the effects of initial specimen density and crushability on the energy allocation of the crushable soil.The simulation results show that the initial specimen density and the crushability strongly affect the energy allocation of the soil both at small and large strains. The major roles of particle breakage, which itself only dissipates a negligible amount of input energy, are to advance changes in the soil fabric and to promote the interparticle friction dissipation. Particularly, at small strains, particle breakage disrupts the strain energy buildup, and thus, reduces the mobilized shear strength and dilatancy of a granular soil. At large strains, where particle breakage is greatly reduced, steady energy dissipation by interparticle friction and mechanical damping is observed. Furthermore, it is found that shear bands develop in most dense crushable specimens at large strains, but they are only weakly correlated to the anisotropy of the accumulated friction dissipation.  相似文献   

17.
Particle breakage continuously changes the grading of granular materials and has a significant effect on their mechanical behaviors.Revealing the evolution pattern of particle breakage is valuable for development and validation of constitutive models for crushable materials.A series of parallel triaxial compression tests along the same loading paths but stopped at different axial strains were conducted on two coral sands with different particle sizes under drained and undrained conditions.The tested specimens were carefully sieved to investigate the intermediate accumulation of particle breakage during the loading process.The test results showed that under both drained and undrained conditions,particle breakage increases continuously with increasing axial strain but exhibits different accumulating patterns,and higher confining pressures lead to greater particle breakage.Based on the test results,the correlations between particle breakage and the stress state as well as the input energy were examined.The results demonstrated that either the stress state or input energy alone is inadequate for describing the intermediate process of particle breakage evolution.Then,based on experimental observation,a path-dependent model was proposed for particle breakage evolution,which was formulated in an incremental form and reasonably considers the effects of the past breakage history and current stress state on the breakage rate.The path-dependent model successfully reproduced the development of particle breakage during undrained triaxial compression using the parameters calibrated from the drained tests,preliminarily demonstrating its effectiveness for different stress paths.  相似文献   

18.
《Soils and Foundations》2022,62(1):101093
?Experimental studies have confirmed that the critical state of a granular material varies with alteration in granular fabric, particle shape and grain size. On the other hand, granular materials demonstrate significant strain rate dependency in the presence of particle crushing. While the first feature is well explored, the strain rate effects on the crushability of granular material and consequent critical state alteration are less ventured. This study highlights the strain rate dependence of the critical state of crushable granular materials like sand. A rate-dependent model is proposed bridging the macro and microscopic understanding. The model follows a consistent viscoplastic formulation without using any overstress function. The proposed model considers various loading rate effects at different porosities, confinements and pore water drainage conditions. Further, it can predict the strain rate-dependent particle crushing and dilation features that affect the critical state of granular materials. The model has been validated by comparing its responses with both the experimental and discrete particle simulations for drained and undrained triaxial conditions. An implicit stress return integration scheme is devised to enable accurate numerical response from the model. ? Finally, a parametric study is presented that envisages the evolution of critical state due to coupled strain rate and particle crushing effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号