首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.  相似文献   

2.
Two MBR pilot systems were constructed and tested in the Bali Primary WWTP. The pilot study shows that two MBR systems, i.e. the Green-MenBio system (MBR-1) and the Bio-MF system (MBR-2), can both fulfill the requirement of wastewater reclamation standard. The MBR-2 system is more economical compared with MBR-1 system. The cost of US dollars 0.10-0.16/m3 is estimated to reclaim the effluent of primary WWTP in Taiwan. The Bali Primary WWTP has the capacity of 1,320,000 cmd which is the biggest in Taiwan. The domestic wastewater of partial Taipei City and Taipei County are collected and transported to the Bali Primary WWTP. The effluent of the Bali Primary WWTP is then discharged into the ocean through two 3.8 m marine outfalls. The AO processes are installed in both MBR systems. More than 90% of the NH3-N can be removed through the AO and membrane processes. The outflow of the MBR systems (without RO) can reach the quality of COD <30 mg/l, BOD <10 mg/l, SS <5 mg/l, NH3-N <3 mg/L. The outflow of the MBR system is proposed to transport 40 km south to the Taoyuan County where four new industrial parks are to be constructed. Part of the reclaimed water is to be used on irrigation and another portion is to be sent to the industries after RO treatment.  相似文献   

3.
The aim of this work is to analyse the biological performances of two immersed membranes bioreactors focusing on the biomass adaptation to complex substrate degradation and the performance in term of permeate quality. Two influents were selected: a synthetic complex influent (acetate/Viandox, MBR1) and a real seafood processing wastewater (surimi product, MBR2). The MBR systems were operated for long periods without any sludge extraction except for sampling. Organic matter removal, sludge production and quality of the treated wastewater were analysed and studied. COD removal efficiencies after a period of biomass adaptation were higher than 97% and 95% for the synthetic and real wastewater respectively. In both cases, the COD of the treated wastewater was lower than 50 mg.L(-1). In spite of salt concentration in the real wastewater a biomass adaptation process occurs. In the overall operational period, a 0.058 gCOD P.gCOD T(-1) and a 0.12 gCOD P.gCOD T(-1) observed sludge yields were obtained for the MBR1 and MBR2 respectively. These values are approximately 5 to 10 times lower than those measured in conventional activated sludge process. These results showed that the presence of particular and some of non-easily degradable compounds in the influent of MBR2 didn't limit the performance of MBR in term of COD removal achieved. The results have also confirmed the excellent permeate quality for water reuse from MBRs systems.  相似文献   

4.
In this study, a novel membrane bioreactor (MBR) in which nitrification and denitrification simultaneously proceed in a single reaction chamber is proposed for advanced municipal wastewater treatment. Anoxic/aerobic environments are alternatively created in the proposed MBR by inserting baffles inside the membrane chamber. The performance of the proposed baffled membrane bioreactor (BMBR) was examined at an existing municipal wastewater treatment facility based on long-term operation. Although the procedure was simple, insertion of the baffles actually created the alternative anoxic/aerobic environments in the chamber at a constant interval and showed a great improvement in the nutrient removal. The insertion did not cause any adverse effect on membrane permeability. In this study, almost complete elimination of NH4+-N was observed while around 8 mg/L of NO(3-)-N was detected in the treated water. The modification proposed in this study can immediately be applied to most existing MBRs and is highly recommended for more efficient wastewater treatment.  相似文献   

5.
A brief review of the fate of micropollutants in membrane-based wastewater treatment due to sorption, stripping, biological degradation/transformation and membrane separation is discussed, to give an overview of these technologies due to the growing importance for water reuse purposes. Compared with conventional activated sludge treatment (CAS) micropollutant removal in membrane bioreactor (MBR) is slightly improved due to complete suspended solids removal and increased sludge age. For discharge to sensitive receiving waters advanced treatment, such as post-ozonation or activated carbon adsorption, is recommended. In water reuse plants nanofiltration (NF) and reverse osmosis (RO) efficiently reject micropollutants due to size exclusions as well as electrostatic and hydrophobic effects reaching potable quality. To remove micropollutants fully, additionally post-ozone or the addition of powdered activated carbon (PAC) have to be applied, which in parallel also reduce NDMA precursors. The concentrate has to be treated if disposed to sensitive receiving waters due to its high micropollutant concentration and ecotoxicity potential. The present review summarizes principles and capabilities for the most important membrane-based applications for wastewater treatment, i.e. porous membranes in MBRs (micro- or ultrafiltration) and dense membrane applications (NF and RO) for water reuse.  相似文献   

6.
Northern Aboriginal communities in Canada suffer from poor wastewater treatment. Treatment systems on 75% of Manitoban Aboriginal communities produce substandard effluent despite the presence of sophisticated treatment systems. A 200-litre, pilot-scale membrane bioreactor (MBR) was established on the Opaskwayak Cree Nation to investigate the feasibility of MBRs in mitigating Aboriginal wastewater treatment issues. The pilot system was remote controlled and monitored via the Internet using the program pcAnywhere. The community utilized two existing sequencing batch reactors (SBR) and three sand filters for wastewater treatment. The community wastewater was relatively weak and highly fluctuating which led to poorly settling sludge that readily fouled the sand filters. A comparison study between the MBR and SBR was undertaken from September to December 2003. Operated at a 10-hour hydraulic retention time and 20-day solids residence time, the MBR outperformed the SBR and sand filtration on BOD and suspended solids removal. Furthermore, the MBR showed high levels of nitrification despite relatively cold water temperatures.  相似文献   

7.
Micropollutants as pharmaceutical active compounds (PhACs), residuals of personal care products or endocrine disrupting chemicals are of increasing interest in water pollution control. In this context the removal efficiencies of sewage treatment plants (STPs) are of importance, as their effluents are important point sources for the release of those substances into the aquatic environment. Activated sludge based wastewater treatment is the worldwide prevalently used treatment technique. In conventional plants the separation of treated wastewater and sludge occurs via sedimentation. A new development is the application of membrane technology for this separation step. The studies focus on the influence of the solids retention time (SRT) on the removal efficiency, as the SRT is the most important parameter in the design of STPs. A conventional activated sludge plant (CASP) and a membrane bioreactor (MBR) were operated at different SRTs. The substances selected are the antiepileptic carbamazepine, the analgesics diclofenac and ibuprofen, the lipid regulator bezafibrate, the polycyclic musks tonalide and galaxolide and the contraceptive 17alpha-ethinylestradiole. No significant differences in the removal efficiency were detected. Due to the absence of suspended solids in the MBR effluent, substances with high adsorption potential could be retained to slightly higher amounts.  相似文献   

8.
The fate and behavior of natural and synthetic estrogens in wastewater treatment processes is currently of increasing concern all over the world. In this study, the removal mechanisms of a natural estrogen, 17β-estradiol (E2), and a synthetic estrogen, 17α-ethinylestradiol (EE2) were investigated in membrane bioreactors (MBRs) with and without powdered activated carbon (PAC) addition. The experimental results showed that the average removal rates of E2 and EE2 by the MBR without PAC addition were 89.0 and 70.9%; PAC addition in the MBR increased the removal rate of E2 and EE2 by 3.4 and 15.8%, respectively. The greater impact of PAC dosing on EE2 removal was due to its greater hydrophobic property. Adsorption played a more important role in the removal mechanisms of EE2 than E2. Biodegradation was the dominant mechanism for the removal of E2 and EE2 in MBRs. Unlike their adsorption behavior, the biodegradation rates of both E2 and EE2 were not significantly different between the MBRs with and without PAC addition.  相似文献   

9.
Two-stage membrane bioreactor (MBR) system was applied to the treatment of landfill leachate from a solid waste disposal site in Thailand. The first stage anoxic reactor was equipped with an inclined tube module for sludge separation. It was followed by an aerobic stage with a hollow fiber membrane module for solid liquid separation. Mixed liquor sludge from the aerobic reactor was re-circulated back to anoxic reactor in order to maintain constant mixed liquor suspended solids (MLSS) concentration in the aerobic reactor. The removal of micro-pollutants from landfill leachate along the treatment period of 300 days was monitored. The results indicated that two-stage MBRs could remove biochemical oxygen demand (BOD), chemical oxygen demand (COD) and NH(4)(+) by 97, 87 and 91% at steady operating condition. Meanwhile organic micro-pollutant removals were 50-76%. The removal efficiencies varied according to the hydrophobic characteristic of compounds but they were improved during long-term MBR operation without sludge discharge.  相似文献   

10.
Membrane bio-reactor for advanced textile wastewater treatment and reuse.   总被引:1,自引:0,他引:1  
Textile wastewater contains slowly- or non-biodegradable organic substances whose removal or transformation calls for advanced tertiary treatments downstream Activated Sludge Treatment Plants (ASTP). This work is focused on the treatment of textile industry wastewater using Membrane Bio-reactor (MBR) technology. An experimental activity was carried out at the Baciacavallo Wastewater Treatment Plant (WWTP) (Prato, Italy) to verify the efficiency of a pilot-scale MBR for the treatment of municipal wastewater, in which textile industry wastewater predominates. In the Baciacavallo WWTP the biological section is followed by a coagulation-flocculation treatment and ozonation. During the 5 months experimental period, the pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, 96% for ammonium and 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surf actants removal of pilot plant and WWTP were very similar (92.5 and 93.3% respectively), while the non-ionic surfactants removal was higher in the pilot plant (99.2 vs. 97.1). In conclusion the MBR technology demonstrated to be effective for textile wastewater reclamation, leading both to an improvement of pollutants removal and to a draw-plate simplification.  相似文献   

11.
This paper aims to demonstrate the relevance of membrane bioreactor (MBR) technology for the reduction of the environmental footprint of wastewater treatment in terms of removal of microbial and organic trace pollutants with increased reliability of operation. The application of a holistic approach using failure mode analysis, life cycle analysis (LCA), water quality fingerprints and environmental impacts underlines the lower environmental footprint of MBRs compared with conventional activated sludge. Several elements of this empirical approach can be included to upgrade the existing LCA tools in order to include the reduction of eco-toxicity, better human health protection and water reuse.  相似文献   

12.
Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.  相似文献   

13.
The ability of several mesocosm-scale and full-scale constructed wetlands (CWs) to remove pharmaceuticals and personal care products (PPCPs) from urban wastewater was assessed. The results of three previous works were considered as a whole to find common patterns in PPCP removal. The experiment took place outdoors under winter and summer conditions. The mesocosm-scale CWs differed in some design parameters, namely the presence of plants, the vegetal species chosen (Typha angustifolia versus Phragmites australis), the flow configuration (surface flow versus subsurface flow), the primary treatment (sedimentation tank versus HUSB), the feeding regime (batch flow versus continuous saturation) and the presence of gravel bed. The full-scale CWs consisted of a combination of various subsystems (ponds, surface flow CWs and subsurface flow CWs). The studied PPCPs were ketoprofen, naproxen, ibuprofen, diclofenac, salicylic acid, carbamazepine, caffeine, methyl dihydrojasmonate, galaxolide and tonalide. The performance of the evaluated treatment systems was compound dependent and varied as a function of the CW-configuration. In addition, PPCP removal efficiencies were lower during winter. The presence of plants favoured naproxen, ibuprofen, diclofenac, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide removal. Significant positive correlations were observed between the removal of most PPCPs and temperature or redox potential. Accordingly, microbiological pathways appear to be the most likely degradation route for the target PPCPs in the CWs studied.  相似文献   

14.
A number of 2-substituted benzothiazoles that are known to be used as fungicides, corrosion inhibitors and vulcanization accelerators in industry have been analyzed in municipal wastewater and the effluents of activated sludge and membrane bioreactor (MBR) treatment over a three month period. All six analytes were regularly detected in the municipal wastewater by liquid chromatography-mass spectrometry and amount to a total concentration of 3.4 microg/L. Of these compounds benzothiazole-2-sulfonic acid (1,700 ng/L), benzothiazole (850 ng/L) and 2-hydroxybenzothiazole (500 ng/L) were most prominent. The source of the benzothiazole emission is yet unknown. Activated sludge treatment did not reduce total benzothiazole concentration significantly. Removals of the individual compounds ranged from 90% for 2-mercaptobenzothiazole and 70% for hydroxybenzothiazole to 40% for benzothiazole. The concentration of benzothiazole-2-sulfonic acid increased by 20%, whereas 2-methylthiobenzothiazole increased by 160% during activated sludge treatment, likely due to the methylation of mercaptobenzothiazole. Total benzothiazole removal in two parallely operated MBRs was significantly better (43%) than in the conventional activated sludge treatment. Namely benzothiazole and benzothiazole-2-sulfonic acid were more effectively removed. This first systematic study on the occurrence of benzothiazoles in municipal wastewater has shown that this is a relevant class of trace contaminants in municipal wastewater which is only incompletely removed in biological wastewater treatment. Emission from sewage treatment is dominated by the most polar benzothiazole-2-sulfonic acid. MBR treatment may reduce but cannot avoid this emission.  相似文献   

15.
The presence in the aquatic environment of xenobiotics such as Pharmaceutical and Personal Care Products (PPCPs) has emerged as an issue of concern. Upgrading sewage treatment quality with modern technologies such as Membrane Bioreactors (MBRs) and/or implementing a further posttreatment might mitigate the release of xenobiotics into surface waters. The performance of two processes treating municipal sewage, a MBR and an Activated Sludge (AS) unit, have been compared in terms of PPCPs removal. Moreover, their effluents were treated using vertical flow reed beds. Both systems were operated under similar conditions, more specifically Hydraulic Retention Time (HRT), maintained at 8 hours, and Sludge Retention Time (SRT) set at 6 and 20 days. Pharmaceuticals belong to therapeutic groups such as antiepileptics (carbamazepine) and analgesics (ibuprofen, naproxen, diclofenac), whereas the personal care products are musk fragrances (galaxolide and tonalide). Xenobiotics removals achieved in the MBR showed better results, particularly for the acidic drugs ibuprofen (87% vs. 50%) and naproxen (56% vs. 6%) operating at low SRT. After filtration through vertical flow reed-beds, PPCPs content in effluents was decreased, below 1 ppb in most cases, improving the effluent quality and confirming reed-beds as an interesting low cost alternative in order to attenuate xenobiotics contamination.  相似文献   

16.
Removal property of nine pharmaceuticals (clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, naproxen and propyphenazone) by chlorination, coagulation-sedimentation and powdered activated carbon treatment was examined by laboratory-scale experiments under the conditions close to actual drinking water treatment processes. Indomethacin and propyphenazone were completely degraded by chlorination within 30 minutes, but others remained around 30% (naproxen and diclofenac) or more than 80% of the initial concentration after 24 hours. A couple of unidentified peaks in a chromatogram of the chlorinated samples suggested the formation of unknown chlorination by-products. Competitive adsorption was observed when the mixed solution of the target pharmaceuticals was subjected to batch adsorption test with powdered activated carbon. Clofibric acid and ibuprofen, which were relatively less hydrophobic among the nine compounds, persisted around 60% of the initial concentration after 3 hours of contact time. Removal performance in actual drinking water treatment would become lower due to existence of other competitive substances in raw water (e.g. natural organic matter). Coagulation-sedimentation using polyaluminium chloride hardly removed most of the pharmaceuticals even under its optimal dose for turbidity removal. It is suggested that the most part of pharmaceuticals in raw water might persist in the course of conventional drinking water treatments.  相似文献   

17.
Water sustainability is essential for meeting human needs for drinking water and sanitation in both developing and developed countries. Reuse, decentralization, and low energy consumption are key objectives to achieve sustainability in wastewater treatment. Consideration of these objectives has led to the development of new and tailored technologies in order to balance societal needs with the protection of natural systems. Membrane bioreactors (MBRs) are one such technology. In this investigation, a comparison of MBR performance is presented. Laboratory-scale submerged aerobic MBR (AMBR), anaerobic MBR (AnMBR), and attached-growth aerobic MBR (AtMBR) systems were evaluated for treating domestic wastewater under the same operating conditions. Long-term chemical oxygen demand (COD) and total organic carbon (TOC) monitoring showed greater than 80% removal in the three systems. The AnMBR system required three months of acclimation prior to steady operation, compared to one month for the aerobic systems. The AnMBR system exhibited a constant mixed liquor suspended solids concentration at an infinite solids retention time (i.e. no solids wasting), while the aerobic MBR systems produced approximately 0.25 g of biomass per gram of COD removed. This suggests a more economical solids management associated with the AnMBR system. Critical flux experiments were performed to evaluate fouling potential of the MBR systems. Results showed similar critical flux values between the AMBR and the AnMBR systems, while the AtMBR system showed relatively higher critical flux value. This result suggests a positive role of the attached-growth media in controlling membrane fouling in MBR systems.  相似文献   

18.
In TFT-LCD industry, water plays a variety of roles as a cleaning agent and reaction solvent. As good quality water is increasingly a scarce resource and wastewater treatment costs rises, the once-through use of industrial water is becoming uneconomical and environmentally unacceptable. Instead, recycling of TFT-LCD industrial wastewater is become more attractive from both an economic and environmental perspective. This research is mainly to explore the capacity of TFT-LCD industrial wastewater recycling by the process combined with membrane bioreactor and reverse osmosis processes. Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 97.3%. For TOC and BOD5 items, the average removal efficiencies were 97.8 and 99.4% respectively. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of the UF membrane device incorporated with biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After treatment of RO, excellent water quality of permeate were under 5 mg/l, 2.5 mg/l and 150 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled for the cooling tower make-up water or other purposes.  相似文献   

19.
The potential of a membrane bioreactor (MBR) and a conventional activated sludge (CAS) system to remove polar micropollutants was evaluated using linear alkylbenzene sulfonates (LAS) as model components. Removal efficiencies over 97% were achieved in both reactor systems. The appearance of biological breakdown metabolites and the respirometric response of the sludges to LAS addition indicated that LAS removal was due to biodegradation, rather than sorption phenomena. The effect of operational variables, such as hydraulic retention time, LAS composition and hydrophobicity of the membrane used in the MBR, was negligible in the range tested. A stepwise increase in LAS influent concentration resulted in higher residual effluent concentrations but did not change the procentual removal efficiency. Because an increase in LAS and SPC effluent concentration occurred to a larger extent in the CAS than in the MBR under similar operating conditions, MBRs may turn out to be be more robust with respect to biological degradation of micropollutants than CAS.  相似文献   

20.
Shortcut nitrification has been successfully applied in a laboratory scale nitrification-denitrification process consisting of an up-flow anaerobic sludge blanket (UASB) and an aerobic membrane bioreactor (MBR) in treating synthetic and municipal wastewater to simultaneously remove organic carbon and nitrogen. For the treatment of synthetic wastewater, the combined system exhibited a high TOC removal of 98% with a steady ammonia removal efficiency of about 98% in the MBR and a total nitrogen (TN) removal efficiency of 90%. In treating municipal wastewater, due to its low COD concentration, removal efficiencies of TOC, ammonia and TN were 70%, 98% and 60%, respectively. The biogas production was around 76.4 L/m3 wastewater when treating synthetic wastewater. However, little biogas was produced when treating municipal wastewater which was the result of low organic carbon loading to the UASB. Energy analysis has demonstrated that this novel shortcut nitrification process could consume less energy than a conventional process and have the potential of bio-energy generation via biogas production thus helping to achieve a more favorable energy balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号