首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfaces enabling directional drop self‐transport have exceptional applications in digital microfluidics, chemical analysis, bioassay, and microreactor technology. While such properties have been obtained by engineering a surface with anisotropic microstructures, a microscopic liquid residue—though it might be invisible macroscopically—is generally left behind the transported drop, resulting in undesired transport loss and severely limiting practical applications of the surface. Here, the origin of microscopic liquid residue is studied by investigating directional drop self‐transport on anisotropic surfaces made of radially arranged omniphobic microstripes. It is revealed that the occurrence of a liquid residue is governed by a transport‐velocity‐dependent dynamic wetting mechanism involving the formation of entrained thin liquid films at high capillary numbers while the local dynamic receding contact angle vanishes. Rayleigh‐like breakup of the liquid films leads to the microscopic liquid residue. It is further shown that a liquid‐like coating featuring highly flexible molecular chains can effectively suppress the formation of entrained liquid films at high transport velocities, thereby facilitating lossless and fast drop self‐transport on anisotropic omniphobic surfaces.  相似文献   

2.
The wetting dynamics of a drop of liquid (1) deposited on a solid on which there is already a thin layer of liquid (2) (contaminant, or maybe a wetting agent) is considered. Diffusion of liquid 2 into liquid 1 by Fickian diffusion leads to evolving effective solid/drop interfacial free energy, occurring during spreading, and modifying wetting kinetics. Spreading rate is increased. Strange behaviour is predicted near equilibrium conditions. The wetting line may “overshoot”, before receding asymptotically. The motion of a two‐dimensional drop is modelled, assuming it is given a slight push to one side after deposition. We expect a regime of spontaneous translational drop motion due to asymmetry in capillary conditions at the two triple lines. Diffusional wetting is compared to reactive wetting.  相似文献   

3.
4.
The flow of a thin liquid film down a flexible inclined wall is examined. Two configurations are studied: constant flux (CF) and constant volume (CV). The former configuration involves constant feeding of the film from an infinite reservoir of liquid. The latter involves the spreading of a drop of constant volume down the wall. Lubrication theory is used to derive a pair of coupled two-dimensional nonlinear evolution equations for the film thickness and wall deflection. The contact-line singularity is relieved by assuming that the underlying wall is pre-wetted with a precursor layer of uniform thickness. Solution of the one-dimensional evolution equations demonstrates the existence of travelling-wave solutions in the CF case and self-similar solutions in the CV case. The effect of varying the wall tension and damping coefficient on the structure of these solutions is elucidated. The linear stability of the flow to transverse perturbations is also examined in the CF case only. The results indicate that the flow, which is already unstable in the rigid-wall limit, is further destabilized as a result of the coupling between the fluid and underlying flexible wall.  相似文献   

5.
Architecturally similar monomers were copolymerized with a water-oil discriminate fluorosurfactant to create hydrophilic-oleophobic coatings. Acrylic acid, hydroxyethyl methacrylate, and methyl methacrylate were used as comonomers with the fluorosurfactant macromer. The homopolymers of the selected comonomers are water-soluble, water-swellable, and water-insoluble, respectively, thus coupling the surfactant monomer in varying concentration within polymers of varying hydrophilicity. Wetting behavior of water and hexadecane were examined as a function of copolymer composition, thus revealing critical structure-property relationships for the surfactant-based system. Acrylic acid copolymers and hydroxyethyl methacrylate copolymers both exhibited a hexadecane contact angle which exceeded the water contact angle. This condition predicted an ability to "self-clean" oil-based foulants. The most oleophobic of the self-cleaning copolymers had an advancing hexadecane contact angle of 73° and an advancing water contact angle of 40°. It was determined that the advancing and receding water and hexadecane contact angle response varies montonically for each copolymer type as the surface concentration of the surfactant is varied. Comparing between copolymer types revealed large differences in wetting response. Methyl methacrylate copolymers with 2.8 mol % surfactant had advancing water contact angle 82° and advancing hexadecane contact angle 26°, which is neither oleophobic nor self-cleaning. In contrast, acrylic acid copolymers with 3.1 mol % surfactant had advancing water contact angle of 44° and advancing hexadecane contact angle of 52°, creating a self-cleaning coating. Thus, the nature of the comonomer exerts a greater influence than the surfactant content on the wetting behavior and self-cleaning ability of the final coating.  相似文献   

6.
A novel scanning probe lithography scheme is introduced involving the field-induced deposition of etch resistant material generated from common organic solvents such as n-octane, toluene, ethyl alcohol, and dioxane in the tip/sample gap region of a liquid cell. An NH(4)F/H(2)O(2)/H(2)O etchant transfers these structures into 7 nm tall posts in a negative-tone fashion, indicating that an etch resistant, likely carbon-based material is produced by field-induced decomposition of the solvent. This is in sharp contrast to the positive tone images that result from a similar process involving water as the gap electrolyte followed by a similar fluorine-based etching.  相似文献   

7.
"Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.4 × 10(11) cm(-2) electrons populate the quantum well matrix. In this regime, absorption spectra show peaks at 3.5 and 4.8 THz (14 and 19 meV) whose relative amplitude depends strongly on temperature. These peaks are assigned to intersubband transitions of electrons in the quantum well matrix. A third, broader feature has a temperature-independent amplitude and is assigned to an absorption involving quantum posts. Eight-band k·p calculations incorporating the effects of strain and Coulomb repulsion predict that the electrons in the posts strongly repel the electrons in the quantum well matrix, "perforating" the electron gas. The strongest calculated transition, which has a frequency close to the center of the quantum post related absorption at 5 THz (20 meV), is an ionizing transition from a filled state to a quasi-bound state that can easily scatter to empty states in the quantum well matrix.  相似文献   

8.
We demonstrated a liquid/liquid and a gas/liquid two-phase crossing flow in glass microchips. A 250-microm-wide microchannel for aqueous-phase flow was fabricated on a top glass plate. Then, as a way to utilize the surface energy difference for stable phase confluence and separation, a 250-microm-wide microchannel for organic-phase (or gas-phase) flow was fabricated on a bottom glass plate and the wall was chemically modified by octadecylsilane (ODS) group. The top and bottom plates were sealed only by pressure. A microchannel pattern was designed so that the two phases made contact at the crossing point of the straight microchannels. The crossing point was observed with an optical microscope. Results showed that the ODS modification of the microchannel wall clearly improved stability of the interface between the two fluids. Pressure difference between fluids was measured and the interface of water and nitrobenzene was stable for the pressure difference from +300 Pa to -200 Pa. The pressure drop in a countercurrent flow configuration was also estimated, and the pressure difference required to realize the counter current flow was less than the allowable pressure range. Finally, we discussed the advantages of utilizing this approach.  相似文献   

9.
In this paper, the plane problem of a frictionless receding contact between an elastic functionally graded layer and two homogeneous quarter planes is considered when the graded layer is pressed against the quarter planes. The top of the layer is subjected to normal tractions over a finite segment. The graded layer is modeled as a non-homogeneous medium with a constant Poisson’s ratio and exponentially varying shear modules. The problem is converted into the solution of a Cauchy-type singular integral equation in which the contact pressure and the receding contact half-length are the unknowns using integral transforms. The singular integral equation is solved numerically using Gauss–Jacobi integration. The corresponding receding contact half-length that satisfies the global equilibrium condition is obtained using an iterative procedure. The effect of the material non-homogeneity parameter on the contact pressure and on the length of the receding contact is investigated.  相似文献   

10.
Dong A  Chen J  Oh SJ  Koh WK  Xiu F  Ye X  Ko DK  Wang KL  Kagan CR  Murray CB 《Nano letters》2011,11(2):841-846
Self-assembly of nanocrystals (NCs) into periodically ordered structures on multiple length scales and over large areas is crucial to the manufacture of NC-based devices. Here, we report an unusual yet universal approach to rapidly assembling hierarchically organized NC films that display highly periodic, tunable microscale stripe patterns over square centimeter areas while preserving the local superlattice structure. Our approach is based on a drying-driven dynamic assembly process occurring on a liquid surface with the stripe pattern formed by a new type of contact-line instability. Periodic ordering of NCs is realized on microscopic and nanoscopic scales simultaneously without the need of any specialized equipment or the application of external fields. The striped NC superlattice films obtained can be readily transferred to arbitrary substrates for device fabrication. The periodic structure imparts interesting modulation and anisotropy to the properties of such striped NC assemblies. This assembly approach is applicable to NCs with a variety of compositions, sizes, and shapes, offering a robust, inexpensive route for large-scale periodic patterning of NCs.  相似文献   

11.
The possibilities to use cryogenic cooling to trap components in liquid chromatography was investigated. In a first step, van 't Hoff plots were measured with a reversed-phase column using the temperature control unit of a conventional high performance liquid chromatography (HPLC) system to gain insight in the retention behavior of proteins at low temperatures. It was estimated that retention factors in the range of k = 10(4) could be achieved at T = -20 °C for lysozyme, indicating that temperature is a usable parameter to trap components in LC. In a next step, trapping experiments were carried out on a nano-LC system, equipped with a UV-detector, using a commercial reversed-phase column. An in-house built setup, allowing cooling of a segment of the column down to temperatures below T = -20 °C, was used to trap components. Experiments were conducted under isocratic and gradient conditions with methanol as organic solvent. It is demonstrated that, by thermally trapping and elution of components, an enhanced S/N ratio and decreased peak widths can be obtained. At the same time, a significant increase in pressure drop occurs during the cooling process. Limitations and benefits of the technique are further discussed.  相似文献   

12.
High-reflective (HR) and even more antireflective (AR) layer systems are in use for widespread applications. Multifunctional layer systems providing high optical functionality with an easy-to-clean or a self-cleaning behaviour would be preferable for many applications to avoid soiling of the surface. In this paper, the feasibility of fabrication by highly productive pulse magnetron sputtering in an in-line coating plant is investigated. Easy-to-clean properties are achieved by a top layer of photocatalytic and photoinduced hydrophilic TiO2.Multifunctional HR layer systems were successfully deposited on glass and polyethylene terephthalate (PET) substrates at a low deposition temperature of 150 °C, demonstrating the possibility of coating certain polymer materials. Double-sided multifunctional AR layer systems with a single-sided photoinduced hydrophilic TiO2 top coating have a resulting reflectivity of about 3% and transmittance of about 97% in the visible range of light.  相似文献   

13.
Relationships between water wettability and ice adhesion   总被引:3,自引:0,他引:3  
Ice formation and accretion may hinder the operation of many systems critical to national infrastructure, including airplanes, power lines, windmills, ships, and telecommunications equipment. Yet despite the pervasiveness of the icing problem, the fundamentals of ice adhesion have received relatively little attention in the scientific literature and it is not widely understood which attributes must be tuned to systematically design "icephobic" surfaces that are resistant to icing. Here we probe the relationships between advancing/receding water contact angles and the strength of ice adhesion to bare steel and twenty-one different test coatings (~200-300 nm thick) applied to the nominally smooth steel discs. Contact angles are measured using a commercially available goniometer, whereas the average strengths of ice adhesion are evaluated with a custom-built laboratory-scale adhesion apparatus. The coatings investigated comprise commercially available polymers and fluorinated polyhedral oligomeric silsesquioxane (fluorodecyl POSS), a low-surface-energy additive known to enhance liquid repellency. Ice adhesion strength correlates strongly with the practical work of adhesion required to remove a liquid water drop from each test surface (i.e., with the quantity [1 + cos θ(rec)]), and the average strength of ice adhesion was reduced by as much as a factor of 4.2 when bare steel discs were coated with fluorodecyl POSS-containing materials. We argue that any further appreciable reduction in ice adhesion strength will require textured surfaces, as no known materials exhibit receding water contact angles on smooth/flat surfaces that are significantly above those reported here (i.e., the values of [1 + cos θ(rec)] reported here have essentially reached a minimum for known materials).  相似文献   

14.
Precise surface tension data of liquid Cu are fundamental for studying its interaction with differently oriented single crystalline sapphire surfaces. For this reason, the surface tension of liquid Cu was measured covering a wide temperature interval of 1058 °C ≤ T ≤ 1413 °C. To avoid contamination of the sample from contact with container walls, the measurement was performed contactlessly in an electromagnetic levitation furnace using the oscillating drop method. A fast digital CMOS-camera (400 fps) recorded top view images of the oscillating sample. From an analysis of the frequency spectrum the surface tension was determined. The measured surface tension of Cu was used to calculate interfacial energies from contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) and M(10-10) surfaces of sapphire substrates. These were measured by means of the sessile drop method at 1100 °C using a drop dispenser. Within the first minutes of contact with the sapphire substrates, the contact angles of liquid Cu droplets rise to their equilibrium values. From these, in addition to interfacial energies also works of adhesion were determined.  相似文献   

15.
Traditional liquid marbles (LMs), liquid droplets encapsulated by hydrophobic particles at the liquid–gas interface, are restricted by their short lifetime and low heat transfer efficiency. Herein, a new paradigm for LMs immersed in various liquid mediums with massive enhanced heat transfer and spatial recognition is designed; without compromising the structural integrity, the lifetime of the liquid marbles in liquid (LMIL) is extended by ≈1000 times compared to classical LMs in air or naked droplets in organic reagents. The LMIL shows promising reverse structural re‐configurability while under external stimuli and maintaining their functionality for a very long period of time (≈weeks). These superior behaviors are further exploited as a miniature reactor with prolonged lifetimes and excellent temperature control, combined with its feasible operation, new opportunities will open up in the advanced chemical and biomedical engineering fields. It is also shown that LMIL can be applied in methylene blue degradation and 3D in‐vitro yeast cell cultures. These findings have important implications for real‐world use of LMs, with a number of applications in cell culture technology, lab‐in‐a‐drop, polymerization, encapsulation, formulation, and drug delivery.  相似文献   

16.
A model for absorption of water vapor into aqueous LiBr flowing over a horizontal smooth tube is developed. The flow is divided into three regimes: (1) falling film in contact with the tube, (2) drop formation at the bottom of the tube, and (3) drop fall between the tubes. Governing equations are formulated for each flow regime, and the variations of solution temperature, LiBr mass fraction, mass absorption rate and heat transfer rate are discussed including the effect of inlet subcooling. It is shown that the temperature variation across the film exhibits a nonlinear profile near the top of the tube and this effect leads to the necessity of a two-dimensional formulation in the falling film regime for accurate prediction. As has been observed previously, the mass fraction boundary layer at the vapor/liquid interface is found to be very thin and this explains the low absorption flux. The model predicts that significant absorption takes place in the drop formation regime with a considerable variation of temperature and mass fraction.  相似文献   

17.
随着工业水平的快速提高,我国的空气污染日益严重。建筑物外墙常年暴露在空气中,外观污染严重,而且附着于其表面的各类污染物难以清除。因此,建筑墙体的防护措施已经成为研究的热点。本文中,以聚二甲基硅氧烷(PDMS)和疏水SiO2为基本原料,制备了可用于建筑墙体防护的自清洁涂层。将配制好的涂层喷涂在建筑墙体上,通过室温固化,便可形成具有自洁净效果的涂层。本文通过分析涂层材料与建筑墙体结合机制,说明涂层与墙体具有较强的黏附作用。由于涂层具有的超疏水特性,附着在其表面的颗粒及液体污染物很容易通过水流清洗干净。此外,实验还表明:该涂层在5个月户外环境下,其自清洁效果无显著的变化。  相似文献   

18.
A thermodynamic theory of the growth of semiconductor nanowhisker (NW) crystals according to the vapor-liquid-solid (VLS) mechanism has been developed. An expression is proposed for the effective surface energy of the system, which is considered as a function of the NW radius and the contact angle of a liquid catalyst drop. Minimization of the surface energy leads to two possible modes of the VLS growth. In a standard mode that is realized when the Nebolsin-Shchetinin-Glas (NSC) condition is valid, the drop is not wetting the side surface of the NW. In the opposite case, the growth proceeds in a wetting mode, whereby the drop spreads about the NW top. It is shown for the first time that, even when the NSC condition is valid, the effective surface energy has two minima separated by a barrier and the minimum corresponding to the wetting mode is lower than that for the non-wetting mode. The results are applied to an analysis of the polytypism observed for GaAs nanowhiskers grown with Au and Ga catalysts.  相似文献   

19.
Sun Q  Olesik SV 《Analytical chemistry》1999,71(11):2139-2145
The use of enhanced-fluidity liquid chromatography (EFLC) for chiral separations was demonstrated on a macrocyclic antibiotic column, Chirobiotic-V. This technique was compared to high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) for the separation of chiral compounds in normal-phase mode. The highest resolution was always observed for EFLC condition. Higher efficiency and shorter retention time were also observed for most separations with portions of CO(2) in the range of 0-50 mol %. Larger amounts of CO(2) caused efficiency to decrease and retention time to be prolonged. For some separations, the temperature was elevated to bring the mobile phase to the supercritical condition. Improved efficiency was obtained in SFC, whereas resolution and selectivity were worse. The use of EFLC in reversed-phase chiral separations was also tested. Enantiomer resolution improved under the EFLC condition. For the tested methanol/H(2)O mixture, fluoroform provided more significant improvements in chromatographic performance than CO(2) when used as a fluidity enhancing liquid. The use of EFLC instead of HPLC also caused a markedly lower pressure drop across the column for commonly used flow rates. The low-pressure drop will allow the use of longer columns or multiple columns to increase the total efficiency of the separation. Since chiral columns are often inefficient, this attribute may be very important for chiral separations.  相似文献   

20.
An investigation of the coalescence of two water drops on a surface is presented and compared with drop spreading. The associated capillary numbers are very low (< 10−5). The drops relax exponentially towards equilibrium. The typical relaxation time tc decreases with contact angle. tc is proportional to the drop size R, thus defining a characteristic velocity U* = R/tc. The corresponding U* values are smaller by many orders of magnitude than the bulk hydrodynamic velocity (U = σ /η, with σ the gas–liquid surface tension and η the viscosity). The dynamics of receding (coalescence) and spreading motion is found to be of the same order when coalescence or spreading is induced by a syringe. The dynamics of coalescence induced with the syringe deposition is systematically faster by an order of magnitude than condensation-induced coalescence. This disparity is explained by the coupling of the contact line motion with the oscillation of the drop observed for syringe deposition but absent for condensation-induced coalescence. Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003, Boulder, Colorado, U.S.A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号