首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LNG technology has been in use since the 1960s. During the last 20 years the total cost of LNG technology has decreased by 30% due mainly to improvements of the liquefaction process and shipping. However, the regasification system has not been significantly improved. The paper presents a detailed advanced exergetic analysis of a novel co-generation concept that combines LNG regasification with the generation of electricity. The analysis includes splitting the exergy destruction within each component into its unavoidable, avoidable, endogenous and exogenous parts as well as a detailed splitting of the avoidable exogenous exergy destruction. The results of the advanced exergetic analysis are confirmed through a sensitivity analysis. Finally, some suggestions for improving the overall system efficiency are developed.  相似文献   

2.
Liquefied Natural Gas (LNG) is one of the most promising fuels with high calorific value and low specific GHG emissions that offers several advantages as an energy carrier for power generation. In this paper, a novel polygeneration concept based on LNG fired plant for power, cooling and drinking water production in island systems is presented. Two Solid Oxide Fuel Cell based energy systems (one simple SOFC and another hybrid concept of SOFC combined with GT) are modelled in Aspen Plus and compared with two conventional combustion based technologies (internal combustion engine and Gas Turbine Combined Cycle) in terms of overall efficiency. Furthermore, a Low Temperature Multi-Effect Distillation (LT-MED) plant was modelled and coupled with the energy systems to evaluate the waste heat recovery potential for desalinated water production. Moreover, three concepts for cold recovery from the LNG regasification plant were presented and modelled. Process simulations results revealed that the hybrid SOFC-GT plant is the best solution in terms of energy efficiency and the heat recovery of the exhaust gas in a LT-MED unit is a promising option for drinking water production with almost no energy cost. Last, from exergetic point of view, the cryogenic energy storage (CES) via the production of liquid air was evaluated as the best option for waste cold utilization during LNG regasification.  相似文献   

3.
The share of liquified natural gas (LNG) in the international trade of natural gas (NG) is continually increasing. This presents increasing opportunities to build power plants to generate electricity at LNG regasification terminals rather than wasting the power generation potential of LNG at about −162°C by regasifying it by seawater, ambient air, or by burning NG. Typically, over 5% of the NG received at LNG plants is used to liquify the remaining incoming gaseous NG at environmental conditions. Theoretically, all the energy consumed at LNG liquefaction plants can be recovered at LNG regasification terminals. In this study, the theoretical and practical power generation potential of regasified LNG is investigated by performing energy and exergy analyses. It is shown that up to 0.191 kWh of electric power can be generated during the regasification of LNG per standard m3 of NG regasified. The potential economic gains associated with power generation at LNG regasification facilities are demonstrated by analyzing the 2018 LNG imports of Turkey as a case study and the world. It is shown that the 314 million tons of LNG imported globally in 2018 has the electric power generation potential of 88 billion kWh with a market value of over 10 billion USD. It also has the potential to offset 38 million tons of CO2 emissions.  相似文献   

4.
Vincenzo La Rocca 《Energy》2011,36(8):4897-4908
The paper deals with the cold energy available during LNG regasification, which can be recovered and utilized both inside the LNG regasification area and at a distance, such as in deep freezing agro food industry facilities and for space conditioning in the commercial and residential sector (e.g. Supermarkets and Hypermarkets). The feasibility study of this kind of application has been carried out at DREAM, Palermo University, within the framework of a research program.The results of a feasibility study of the kind of venture proposed, starting from its conceptual design and with a thorough thermodynamic and economic analysis, demonstrated the suitability and the profitability of the applications proposed. They seem very attractive due to expected wide future exploitation of LNG regasification in the World.  相似文献   

5.
Cold energy during the LNG regasification process is usually applied for power generation, but the electricity demand varies with the time. Therefore, a thought that transforming electrical energy into hydrogen energy by PEM electrolyzer is put forward to adjust the adaptability of power output to electricity demand. This paper proposes a new double-pressure condensation Rankine cycle integrated with PEM electrolyzer for hydrogen production. In this system, seawater is used as the heat source, and binary mixed working fluids are applied. Meanwhile, multi-stream heat exchanger is introduced to improve the irreversibility of heat transfer between LNG and working fluid. The key system parameters, including seawater temperature, the first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG, are studied to clarify their effects on net power generation, hydrogen production rate and energy efficiency. Furthermore, the hydrogen production rate is as the objective function, these parameters are optimized by genetic algorithm. Results show that seawater temperature has positive impact on the net power output and hydrogen production rate. The first-stage condensation temperature, the second-stage condensation temperature, and outlet temperature of LNG have diverse effects on the system performance. Under the optimal working conditions, when the LNG regasification pressure are 600, 2500, 3000 and 7000 kPa, the increasing rate for optimized net power output, hydrogen production rate and energy efficiency are more than 11.68%, 11.67% and 8.88%, respectively. The cost of hydrogen production with the proposed system varies from 1.93 $/kg H2 to 2.88 $/kg H2 when LNG regasification pressure changes from 600 kPa to 7000 kPa.  相似文献   

6.
The paper deals with the problem of cold recovery for direct utilization both in the site of regasification facility and far from it.A modular LNG regasification unit is proposed having the regasification capacity of 2 billion standard cubic meters/year of gas. The modular plant is based on use of a power cycle working with ethane or ethylene which allows operation of cold energy transfer, contained in LNG to be regasified, in a range of temperatures suitable for multipurpose use of cold, reducing regasification process irreversibility. Some electric energy is produced by the power cycle, but the own mission of modular unit proposed is addressed to deliver cold suitable for industrial and commercial use in the proper temperature range. The option considers, also, the use of carbon dioxide as a secondary fluid for transfer of cold from regasification site to far end users. This option seems very attractive due to expected wide future exploitation of LNG regasification in the world.Results of a detailed thermodynamic and economic analysis demonstrate the suitability of the proposal.  相似文献   

7.
In LNG regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. The authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved CHP plant (combined heat and power). Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 × 109 standard m3/yr.This paper deals with an outlook of LNG trading now expanding in the World and gives a concise state of the art with a review of technology seeming that proposed. Then an innovative CHP plant and results pertaining the selection of working fluids, made with an optimization analysis, are presented.  相似文献   

8.
In liquefied natural gas (LNG) regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. In a previous paper, the authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved combined heat and power (CHP) plant. Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 × 109 standard cubic meters/year.This paper deals with the results of feasibility studies, developed by the authors at DREAM in the context of a research program, on ventures based on thermodynamic and economic analysis of improved CHP cycles and related innovative technology which demonstrate the suitability of the proposal.  相似文献   

9.
The paper deals with cold recovery during LNG regasification. The applications analyzed pertain to the use in deep freezing agro food industry and in space air conditioning facilities in commercial sector (Supermarkets and Hypermarkets) of cold recovered from the regasification process.  相似文献   

10.
Liquefied natural gas (LNG), an increasingly widely applied clean fuel, releases a large number of cold energy in its regasification process. In the present paper, the existing power generation cycles utilizing LNG cold energy are introduced and summarized. The direction of cycle improvement can be divided into the key factors affecting basic power generation cycles and the structural enhancement of cycles utilizing LNG cold energy. The former includes the effects of LNG-side parameters, working fluids, and inlet and outlet thermodynamic parameters of equipment, while the latter is based on Rankine cycle, Brayton cycle, Kalina cycle and their compound cycles. In the present paper, the diversities of cryogenic power generation cycles utilizing LNG cold energy are discussed and analyzed. It is pointed out that further researches should focus on the selection and component matching of organic mixed working fluids and the combination of process simulation and experimental investigation, etc.  相似文献   

11.
A group of European gas transportation companies within the European Gas Research Group launched in 2007 the ‘MOLAS’ Project to provide a software program for the analysis of the Liquefied Natural Gas (LNG) ageing process during ship transportation. This program contains two different modeling approaches: a physical algorithm and an ‘intelligent’ model. Both models are fed with the same input data, which is composed of the ship characteristics (BOR and capacity), voyage duration, LNG composition, temperature, pressure, and volume occupied by liquid phase at the port of origin, together with pressure at the port of destination. The results obtained are the LNG composition, temperature and liquid volume at the port of destination. Furthermore, the physical model obtains the evolution over time of such variables en route as it is based on unsteady mass balances over the system, while the i-model applies neural networks to obtain regression coefficients from historical data composed only of origin and destination measurements. This paper describes both models and validates them from previous published models and experimental data measured in ENAGAS LNG regasification plants.  相似文献   

12.
A LNG re-liquefaction plant is optimized with a multi-objective approach which simultaneously considers exergetic and exergoeconomic objectives. In this regard, optimization is performed in order to maximize the exergetic efficiency of plant and minimize the unit cost of the system product (refrigeration effect), simultaneously. Thermodynamic modeling is performed based on energy and exergy analyses, while an exergoeconomic model based on the total revenue requirement (TRR) are developed. Optimization programming in MATLAB is performed using one of the most powerful and robust multi-objective optimization algorithms namely NSGA-II. This approach which is based on the Genetic Algorithm is applied to find a set of Pareto optimal solutions. Pareto optimal frontier is obtained and a final optimal solution is selected in a decision-making process. An example of decision-making process for selection of the final solution from the available optimal points of the Pareto frontier is presented here. The feature of selected final optimal system is compared with corresponding features of the base case and exergoeconomic single-objective optimized systems and discussed.  相似文献   

13.
The boil off gas in Spanish LNG terminals is managed using recondensers. The electricity consumed by these terminals is bought in the Spanish wholesale market. Several power generating options using current available equipment and assuring the availability of the current terminal process have been analyzed thermoeconomically. A new combined cycle using a gas turbine and a pure NH3 Rankine cycle coupled with the natural gas vaporization process has been chosen as the most advisable one to be installed, due to the lower thermoeconomic cost obtained as shown in a new graphical representation similar to the existing exergetic cost diagrams.  相似文献   

14.
With a view to finding the best configuration for a small cogeneration system based on the pellet combustion process, exergetic analysis was applied to a small pellet stove. The evaluation focuses on fume exergetic content for power generation purposes. Preheated air, secondary air, fume recirculation and basis configurations were studied. Global exergetic calculation was developed at these configurations based on experimental correlations of energy and emissions. The influences of the pellet feeding rate, excess air, secondary air and fume recirculation were studied. The results for multiple configurations are discussed and the best one is presented. Results show that CO emissions have a major influence on fume exergetic content, although if emissions diminish only a slight thermomechanical exergetic efficiency increase is expected.  相似文献   

15.
Strategic behaviour by gas producers is likely to affect future gas prices and investments in the European Union (EU). To analyse this issue, a computational game theoretic model is presented that is based on a recursive-dynamic formulation. This model addresses interactions among demand, supply, pipeline and liquefied natural gas (LNG) transport, storage and investments in the natural gas market over the period 2005–2030. Three market scenarios are formulated to study the impact of producer market power. In addition, tradeoffs among investments in pipelines, LNG liquefaction and regasification facilities, and storage are explored. The model runs indicate that LNG can effectively compete with pipelines in the near future. Further, significant decreases in Cournot prices between 2005 and 2010 indicate that near-term investments in EU gas transport capacity are likely to diminish market power by making markets more accessible.  相似文献   

16.
In common with other major economic centres in China, Shanghai's energy consumption has been increasing rapidly to support the high growth rate of its economy. To achieve rational, efficient and clean use of energy, together with improved environmental quality within the city, the Shanghai municipal government has decided to expand the supply and utilization of natural gas. Shanghai plans to increase the share of natural gas in its primary energy mix to 7 per cent by 2010, up from 3 per cent in 2005. This increase in natural gas demand has to be matched with a corresponding increase in supply. To date, the Shanghai region has relied on offshore extracted natural gas but this supply is limited due to the size of the reserves. Since 2005, the West–East pipeline has provided an alternative for Shanghai but demands from other regions could reduce the potential for expanding supplies from that source. Since domestic production will not be sufficient to meet demand in the near future, Shanghai is building a liquefied natural gas (LNG) regasification terminal at the Yangshan deep-water port that would allow an additional supply of more than 3 billion cubic meters per year of natural gas. Malaysia has already committed to supply LNG to the Shanghai terminal at a price that is significantly higher than the wholesale “city-gate” price for natural gas transported via pipeline, but still lower than the gas price to end-use consumers. The presence of both an LNG terminal and a transmission pipeline that connects Shanghai to domestic gas-producing regions will create gas-on-gas competition. This study assesses the benefits of introducing such competition to one of China's most advanced cities under various scenarios for demand growth. In this paper, the impact of imported LNG on market concentration in Shanghai's gas market will be analysed using the Herfindahl–Hirschmann index (HHI) and the residual supply index (RSI). Our results show that Shanghai remains a supply-constrained gas market that will continue to rely upon gas supplies from the western provinces and imported LNG. After 2017, the gas market in Shanghai can be regarded as unconcentrated since its HHI fall below 1800 under a very high growth scenario. In terms of RSI, the gas market can be considered competitive at low, moderate and high growth consumption between 2012 and 2015.  相似文献   

17.
Conceptual design and modeling of novel-integrated process configurations for helium extraction and natural gas liquefaction is investigated. Mixed fluid cascade (MFC) refrigeration system is considered for providing the needed refrigeration in the natural liquefaction section. Using an absorption refrigeration system as the precooling cycle is investigated in one of the introduced processes. Integrated flash and distillation method is used for helium extraction. Purity of the extracted crude helium is 50% (mole). Process streams operational condition and specifications of the devices are presented and explained. Composite curves of the heat exchangers demonstrate that thermal design has been done properly. Ratio of the power consumption to the produced liquefied natural gas (LNG) of the MFC process is 0.265 kWh per kg LNG and applying absorption refrigeration system instead of the pre-cooling cycle decreases it to 0.1849 kWh per kg LNG. For the modified process with absorption refrigeration system helium extraction rate and power consumption ratio are 0.951 and 132.9 (kWh/[kgmole Helium]) respectively. Exergy method is applied on the under consideration processes. The results show that the compressors have the highest rate of exergy destruction among the other process equipment. An extensive economic analysis is done on the proposed processes. The results show that prime cost of the product (US$/kg LNG) for MFC and modified MFC processes are 0.1939 and 0.2069, respectively. Finally, a sensitivity analysis is done based on the economic factors such as electrical energy price and prime cost of the product.  相似文献   

18.
This paper investigates a detailed thermodynamic analysis of a modular-type membrane condenser system where a cooler or condenser is connected in series upstream of the membrane condenser module. A coolant circulates inside the cooler/condenser to cool down the industrial flue gas up to saturation conditions. The analysis covers water recovery rate and energy requirement for different combinations of flue gas humidity, flow rate, and temperature. Additionally, a case study is included which considers a practical industrial exhaust flue gas where the constituents of the flue gas with volumetric ratio and the feed parameters are referred from the literature. The case study investigated the utilization of cold energy obtained by LNG regasification facility as a cooling power source for the water vapor recovery process. A detailed heat transfer analysis based on the heat exchanger model is performed to determine the required mass flow rate of cooling water and natural gas. It is concluded that, the water self-sufficiency of a power plant can be achieved if the mass flow rate of the −50 °C natural gas which is entering the membrane condenser is kept around 0.3 kg s−1 for every 1  kg s−1 flow rate of the 168 °C flue gas.  相似文献   

19.
This work presents an energetic and exergetic analysis of an upgraded frigorific production unit, operating with a novel organic mixture: DMAC/R124 (N, N′-dimethylacetamide/2-chloro-1,1,1,2-tetrafluoroethane). Investigated parameters are the COP (performance coefficient), the irreversibility and the exergetic efficiency. Performances of the proposed mixture system are compared with those relative to the classical water/ammonia system. Results show that the COP obtained with the new fluids is similar to that relative to the old one, it is about 64% for a compression ratio about 2, while the same optimum value is achieved with a compression ratio about 3.3 when working with ammonia/water. Furthermore, the system using the new proposed couple uses lower threshold temperatures, between 60 °C and 80 °C as optimum COP, which allows the use of low temperature energy sources.Results of the exergetic analysis indicate that irreversibility of the R124/DMAC system is lower than that of the ammonia/water system by about 5 kW and so is the exergetic efficiency. It is noted from this study that the major gain brought by this new couple is the diminution of the operating temperatures of this type of heat pumps from temperatures going to 120 °C–80 °C and even 60 °C. We retain the advantages of introducing this organic absorbent (DMAC) in the refrigeration production field.  相似文献   

20.
Although there has been a lot of waste heat utilization studies for the air-cooled data center (DC) systems, the waste heat utilization has not been studied for the liquid-cooled DC systems, which have been rapidly gaining importance for the high-performance Information and Communication Technology facilities such as cloud computing and big data storage. Compared to the air-cooled systems, higher heat removal capacity of the liquid-cooled DC systems provides better heat transfer performance; and therefore, the waste heat of the liquid-cooled DC systems can be more efficiently utilized in the low-temperature and low-carbon energy systems such as electricity generation via polymer electrolyte membrane (PEM) fuel cells. For this purpose, the current study proposes a novel hybrid system that consists of the PEM fuel cell and the two-phase liquid-immersion DC cooling system. The two-phase liquid immersion DC cooling system is one of the most recent and advanced DC cooling methods and has not been considered in the DC waste heat utilization studies before. The PEM fuel cell unit is operated with the hydrogen and compressed air flows that are pre-heated in the DC cooling unit. Due to its original design, the hybrid system brings its own original design criteria and limitations, which are taken into account in the energetic and exergetic assessments. The power density of the PEM fuel cell reaches up to 0.99 kW/m2 with the water production rate of 0.0157 kg/s. In the electricity generation case, the highest energetic efficiency is found as 15.8% whereas the efficiency increases up to 96.16% when different multigeneration cases are considered. The hybrid design deduces that the highest exergetic efficiency and sustainability index are 43.3% and 1.76 and they are 9.4% and 6.6% higher than exergetic and sustainability performances of the stand-alone PEM fuel cell operation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号