首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anisotropy-Based Failure Criterion for Interphase Systems   总被引:1,自引:0,他引:1  
This paper presents a methodology for estimating the shear strength of interphase systems composed of granular materials and planar inclusions having various degrees of roughness. Existing empirical and semiempirical relationships between strength and surface roughness do not appear to be general and are unable to account for surface-particle interactions at the appropriate scales. The proposed method is based on the contact force anisotropy of those particles that touch the inclusion surface. It was developed using two-dimensional discrete element method simulations of interphase systems constructed within a direct interface shear test device. Particles consist of polydisperse and monodisperse spheres of constant median grain diameter. Surface roughness was varied by using profiles with regular and random asperities, and profiles of manufactured surfaces. Results indicate that the magnitude and direction of average contact total force at the interface controls strength. A bilinear relationship, independent of particle to surface friction coefficient, exists between the principal direction of contact total force anisotropy and strength. Results using the proposed criterion are in good agreement with laboratory results using spheres and subrounded sand.  相似文献   

2.
This paper presents a detailed computational investigation of the effect of particle shape on the interface shear behavior of granular materials. The discrete element method (DEM) using clusters to model rough particles is used, expanding the procedure introduced in an earlier paper by Jensen et al. [1]. Seven new cluster shapes (i.e., particle configurations) of varying degrees of roughness are presented herein, and numerical experiments simulating ring shear tests are made using these clusters. From these simulations, the effect of particle shape on void ratio (e) and interface angle of friction between soil and structure surface (δ) is reported. Particle shape characteristics include roundness, angularity, and surface roughness. The results of numerical simulations using the newly formed cluster shapes are in very good qualitative agreement with laboratory tests. Simulation results showed that the void ratio of a particle mass increased as the angularity or roughness of the particles increased. They also showed an increase in interface shear strength between perfectly round DEM particles and the more angular cluster shapes, but no systematic correlations with the various definitions of particle shape parameters was found. It may be necessary to use greater accuracy in modeling the size and shape distributions of a natural medium to further investigate the influence of particle shape on interface friction. The simulations also successfully reflected the relationship between interface friction angle and structure surface roughness as demonstrated in recent physical experiments. The simulations comparing initially “dense” media to initially “loose” media demonstrated behavior that is similar to the behavior of a natural sandy soil observed in experiments.  相似文献   

3.
Recrystallization and grain growth in a 2219/TiC/15p composite were investigated as functions of the amount of deformation and deformation temperature. Both cold and hot deformed samples were annealed at the normal solution treatment temperature of 535 °C. It was shown that large recrystallized grain diameters, relative to the interparticle spacing, could be produced in a narrow range of deformation for samples cold-worked and those hot-worked below 450 °C. For cold-worked samples, between 4 to 6 pct deformation, the recrystallized grain diameters varied from 530 to 66 μm as the amount of deformation increased. Subsequent grain growth was not observed in these recrystallized materials and noncompact grain shapes were observed. For deformations greater than 15 pct, recrystallized grain diameters less than the interparticle spacing were observed and subsequent grain growth produced a pinned grain diameter of 27 μm. The pinned grain diameter agreed well with an empirical model based on three dimensional (3-D) Monte Carlo simulations of grain growth and particle pinning in a two-phase material. Tensile properties were determined as a function of grain size, and it was shown that grain size had a weak influence on yield strength. A maximum in the yield strength was observed at a grain size larger than the normal grain growth and particle-pinned diameter.  相似文献   

4.
Peak Friction Behavior of Smooth Geomembrane-Particle Interfaces   总被引:1,自引:0,他引:1  
An investigation of shear mechanisms at interfaces between particles and relatively smooth materials using contact mechanics and basic friction theory reveals that a combination of sliding and plowing governs dense Ottawa 20∕30 sand∕smooth high density polyethylene geomembrane peak interface shear behavior. Contact area and the corresponding shear resistance during sliding increase at a slower rate than the applied normal stress, resulting in a decreasing friction coefficient and flattening of the peak strength envelope. Plowing of soil grains results in an increasing peak friction coefficient with increasing normal stress and can produce an upward curvature of the strength envelope above a critical stress level. Plowing is primarily controlled by the relative hardness of the interface materials and by grain shape with angular particles exhibiting plowing in all normal stress ranges, whereas nearly perfect spheres exhibit only sliding. High surface hardness is shown to constrain shear behavior to a sliding mode with little contribution from plowing. These findings are consistent with results reported in the tribology literature.  相似文献   

5.
Grout piles are often used to reinforce the base soil against base heave when carrying out deep excavations in soft clay. However, there is still a lack of an adequate criterion to describe the shear strength of clay reinforced with grout piles. In general, the anisotropic strength characteristic of clay reinforced with grout piles is more significant than that of clay. The objective of this work is to develop an anisotropic strength criterion for the reinforced soil mass. Only four parameters are needed in this anisotropic strength criterion: two are the strength properties of the in situ clay, namely, the axial compressive and axial extensive undrained shear strengths; another is the undrained shear strength of treated soil; and the final is the improvement ratio which is related to the spacing and layout pattern of the grout piles. To be used in two-dimensional undrained stability analysis, the suitability of this anisotropic strength criterion under plane strain conditions is verified by comparing the results with true triaxial test. The maximum difference between the calculated and laboratory measured shear strengths is less than 8%. The results of this study indicate that the anisotropic undrained shear strength of clay reinforced with grout piles under plane strain condition decreases with an increase in the angle between the vertical direction and the major principal stress and decreases with a decrease in the strength anisotropy ratio of clay reinforced with grout piles. However, there will be a greater improvement in the effect if the grout piles are installed in the active zone rather than in the passive zone. This is because the shear strength of a grout pile mobilized in the active zone is close to its maximum level.  相似文献   

6.
Bridge abutments typically contain a backwall element that is designed to break free of its base support when struck by a bridge deck during an earthquake event and push into the abutment backfill soils. Results are presented for a full-scale cyclic lateral load test of an abutment backwall configured to represent the dimensions (1.7?m height), boundary conditions, and backfill materials (compacted silty sand) that are typical of California bridge design practice. An innovative loading system was utilized that operates under displacement control and that assures horizontal wall displacement with minimal vertical displacement. The applied horizontal displacement ranged from null to approximately 11% of the wall height (0.11H). The maximum earth pressure occurred at a wall displacement of 0.03H and corresponded to a passive earth pressure coefficient of Kp = 16.3. The measured force distribution applied to the wall from hydraulic actuators allowed the soil pressure distribution to be inferred as triangular in shape and the mobilized wall-soil interface friction to be evaluated as approximately one-third to one-half of the soil friction angle. Post-test trenching of the backfill showed a log-spiral principal failure surface at depth with several relatively minor shear surfaces further up in the passive wedge. The ultimate passive resistance is well estimated by the log-spiral method and a method of slices approach. The shape of the load-deflection relationship is well estimated by models that produce a hyperbolic curve shape.  相似文献   

7.
When an elastic wave propagates through a rock mass, its amplitude is attenuated and velocity is slowed due to the presence of fractures. During wave propagation, if the shear stress at a fracture interface reaches the fracture shear strength, the fracture will experience a large shear displacement. This paper presents a study of the normal transmission of S-waves across parallel fractures with Coulomb slip behavior. In our theoretical formulation, the method of characteristics combined with the Coulomb slip model is used to develop a set of recurrence equations with respect to particle velocities and shear stress. These equations are then solved numerically. In a comparison with the theoretical study, numerical modeling using the universal distinct element code (UDEC) has been conducted. A general agreement between UDEC modeling and theoretical analysis is achieved. The magnitude of the transmission coefficient is calculated as a function of shear stress ratio, nondimensional fracture spacing, normalized shear stiffness, and number of fractures. The study shows that the shear stress ratio is the most important factor influencing wave transmission, and the influence of other factors becomes more apparent when the shear stress ratio is small.  相似文献   

8.
Group Interaction Effects on Laterally Loaded Piles in Clay   总被引:3,自引:0,他引:3  
This paper presents the results of static lateral load tests carried out on 1×2, 2×2, 1×4, and 3×3 model pile groups embedded in soft clay. Tests were carried out on piles with length to diameter ratios of 15, 30, and 40 and three to nine pile diameter spacing. The effects of pile spacing, number of piles, embedment length, and configuration on pile-group interaction were investigated. Group efficiency, critical spacing, and p multipliers were evaluated from the experimental study. The experimental results have been compared with those obtained from the program GROUP. It has been found that the lateral capacity of piles in 3×3 group at three diameter spacing is about 40% less than that of the single pile. Group interaction causes 20% increase in the maximum bending moment in piles of the groups with three diameter spacing in comparison to the single pile. Results indicate substantial difference in p multipliers of the corresponding rows of the linear and square pile groups. The predicted field group behavior is in good agreement with the actual field test results reported in the literature.  相似文献   

9.
A model has been developed to predict crack opening and closing behavior for propagating fatigue cracks which undergo significant sliding displacements at crack flanks. Crack surfaces were described statistically by assuming a random distribution of asperity heights and a mean density of asperities and asperity radii. The propagating crack was subdivided into strips, and each strip was treated as a contact problem between two randomly rough surfaces. The remote tensile stresses were varied in a cyclical manner. The contact stresses at minimal load were determined by analyzing the local crushing of asperities via a sliding mechanism. Then, upon loading, the crack opening stress levels were computed when the contact stresses were overcome. Part 1 of this article includes a discussion of the previous models, then introduces statistical contact mechanics concepts which are utilized in the fatigue crack growth simulations. In addition, the numerical algorithms for the modeling work and the sensitivity of results to model parameters are described. The role of stress ratio, maximum stress level, crack length, and the geometry of crack surfaces on the crack growth behavior will be discussed in Part 2 of this article.  相似文献   

10.
It is well established that the regular lamellar eutectic structure exhibits a limited range of spacings rather than a unique spacing during steady-state growth at constant velocity. The min-imum observed spacing corresponds to the extreme spacing predicted by the Jackson-Hunt (JH) theory. However, the maximum observed spacing is much less than the maximum spacing pre-dicted by this theory. In this article, the assumption of a planar interface made by Jackson and Hunt is relaxed, and the boundary element method is used to calculate the solute distribution for a curved interface. An iterative method is used to calculate the maximum spacing for which a self-consistent interface shape exists for several velocities. This maximum self-consistent spac-ing introduces an upper bound into the JH model and shows good agreement with the maximum observed spacing in the Pb-Sn system. The deepest point on the self-consistent interface shape at the maximum spacing does not lie in a deep pocket. It is below the conjunction point but close to it.  相似文献   

11.
《Acta Metallurgica》1986,34(11):2085-2094
Diffraction profiles in the direction normal to a planar interface have been evaluated. The diffraction intensities were calculated for the entire diffracting volume, consisting of a distorted interface zone surrounded by two perfect crystals. General features of the model applicable to any type of interface are presented. The case of a twist grain boundary with an exponential lattice expansion at the interface is treated in detail. Profiles were calculated as a function of the maximum strain at the interface as well as the extent of the strain normal to the boundary. The case of an interphase interface is treated in Part II. The effect of facetting at the grain boundary was also considered. An expansion in planar spacing is shown to result in an asymmetric broadening of the principal Bragg reflections. However, no simple quantitative relationship exists between the width of the distorted interface region and the resultant streak length in diffraction. The calculations were compared to experimental results in the literature on diffraction effects at gold, and nickel oxide twist grain boundaries. Based on these comparisons, conclusions are reached as to the structural nature of these grain boundaries.  相似文献   

12.
针对氧煤燃烧熔分炉在熔炼过程中的喷溅行为,采用Fluent软件中VOF多相流模型耦合Realizable k-ε湍流模型进行数值模拟,利用水模试验加以验证,对熔分炉熔渣喷溅过程进行研究,探究不同工艺参数(流量、倾角、直径和浸没深度)对喷溅高度的影响。结果表明,熔渣喷溅由残余部分动能的气泡逸出破碎产生;随着氧枪流量的增大,其喷溅高度不断增加,流量为0.28 kg/s时喷溅达到3.13 m;倾斜角度增加造成喷溅高度先增加后减小,倾角为-10°时喷溅高度最大为3.07 m;增加氧枪直径,喷溅高度先增大后减小,在直径为30 mm时喷溅最高为3.09 m;减小氧枪浸没深度有利于降低喷溅高度,当浸没深度为150 mm时,喷溅高度约为3.075 m。  相似文献   

13.
This paper presents experimental data and numerical modeling results that illustrate the effects of progressive failure on the measured shear strength of a textured geomembrane/geosynthetic clay liner (GMX/GCL) interface. Large direct shear tests were conducted using different specimen gripping/clamping systems to isolate the effects of progressive failure. These tests indicate that progressive failure causes a reduction in measured peak shear strength, an increase in the displacement at peak, an increase in large displacement shear strength, and significant distortion of the shear stress–displacement relationship. A numerical model was developed to simulate progressive failure of a GMX/GCL interface. Measured and simulated shear stress–displacement relationships are in good-to-excellent agreement at four normal stress levels. The model was then used to investigate mechanisms of progressive interface failure and factors that control its significance. The results indicate that accurate measurements of shear stress–displacement behavior and strength are obtained when gripping surfaces prevent slippage of the test specimen and the intended failure surface has the lowest shear resistance of all possible sliding surfaces. The use of proper gripping surfaces is expected to reduce difficulties in test data interpretation and to increase the accuracy and reproducibility of test results.  相似文献   

14.
The significance of matrix and grain boundary microstructural characteristics on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy has been evaluated. Maximum strength was found to be associated with a Guinier-Preston zone matrix. The precipitate-free-zone adjacent to high angle grain boundaries had only a slight effect on yield and tensile strength but a greater influence on hardness. Stress corrosion susceptibility was studied in an aqueous chloride environment over a 0.7–3.5 pH range. For material of highest strength, grain boundary precipitate spacing was found to be of primary importance to susceptibility. The effect of grain boundary precipitate spacing is most significant to the crack propagation stage of stress corrosion. These results indicate that improved properties for Al-Mg-Zn type alloys could be attained by a desirable combination of matrix and grain boundary structure.  相似文献   

15.
The roughness of a natural rock joint was measured in different directions using a laser profilometer. Two stationary roughness parameters and a nonstationary roughness parameter (all fractal based) were used to quantify anisotropic roughness. A plaster of Paris based model material was used to make model material replicas of the natural rock joint. Direct shear tests were performed at five different normal stresses, in each of the directions that were used for the roughness measurements, to measure the anisotropic peak shear strength of the model joint. Required observations and experiments were conducted to estimate (1) the asperity shear area as a proportion of the total surface area of the joint, for each tested joint; (2) the basic friction angle of the model material; and (3) the joint compressive strength. Tests were also conducted to develop a peak shear-strength criterion for the intact model material. Part of the direct shear test data was used to develop a new peak shear-strength criterion for joints including the aforementioned parameters. The other part of the data was used for model validation.  相似文献   

16.
Shear Band Formation Observed in Ring Shear Tests on Sandy Soils   总被引:3,自引:0,他引:3  
Shear band formation is an important factor in understanding failures in soil. In this paper, shear localization and shear band formation and evolution are examined using ring shear tests performed on three sands prepared by air pluviation. A transparent outer confining ring was used to visualize formation and evolution of the entire shear band. By comparing the ring shear stress paths with visual observations made during shearing, the writers show that the specimen shears uniformly over its entire height prior to shear localization. Bifurcation under constant volume and drained conditions occurs as the soil fully mobilizes its effective friction angle, and subsequent shear displacements occur only within the shear band. Consistent with previous studies, the final thickness of the observed shear band ranged from 10 to 14 times the median particle diameter. Substantial particle damage occurred within the shear band after large displacements, particularly for dilative specimens, causing additional strain-softening in contractive specimens and a second phase transformation and considerable strain-softening in dilative specimens.  相似文献   

17.
An investigation was conducted on the relationship between the internal shear strength of hydrated needle-punched (NP) geosynthetic clay liners (GCLs) and the interface shear strength between hydrated NP GCLs (nonwoven side) and high-density polyethylene (HDPE) textured geomembranes (GMXs). New large-scale direct shear data are presented and compared to previous results obtained using similar materials and procedures. The data indicate that both GCLs and GMX/GCL interfaces display large postpeak strength reduction, even at high normal stress. Peak and large-displacement failure envelopes are nonlinear; except for the GCL internal residual strength envelope, which passes through the origin and has a friction angle of 4.8°. GMX/GCL interfaces can be expected to have lower peak strengths and higher large-displacement strengths than GCL internal shear specimens. However, the failure mode for GMX/GCL specimens can change from interface shear to GCL internal shear as normal stress increases. Design for peak strength conditions should be based on the lowest peak strength interface in a liner system, and design for large displacement conditions should be on the basis of the residual strength of the same interface.  相似文献   

18.
Compressive creep behavior of spray-formed gamma titanium aluminide   总被引:1,自引:0,他引:1  
The creep behavior of spray-formed γ-TiAl with a fine, equiaxed fully lamellar (FL) microstructure was studied in a temperature-stress regime of 780 °C to 850 °C and 180 to 320 MPa. An apparent stress exponent of 4.3 and an activation energy of 342 kJ/mol were observed in the high-temperature high-stress regime. Compared with the FL γ-TiAl which was obtained through conventional casting+heat treatment processes, the spray-formed γ-TiAl exhibited higher creep resistance. The higher creep resistance observed in the present study was discussed in light of the interstitial level, the chemical composition, the grain size, and the interlocking of lamellae at the grain boundary, which in turn may be a function of interlamellar spacing and the step height of the serrated grain boundaries. It was suggested that the small interlamellar spacing and possibly larger step height may contribute to the higher creep resistance observed in the present study.  相似文献   

19.
Aluminum alloys that contain low angle boundaries exhibit different superplastic behavior than alloys consisting of high angle boundaries. On a relative basis, the low angle boundaries increase the flow stress, but impart a greater resistance to cavitation; the strain-rate sensitivity of this material is generally smaller and the change in the strain-rate sensitivity with strain rate shows a minimum instead of a maximum as observed in the large angle boundary materials. As a result, the subgrain material can be deformed to large tensile strains at fast strain rates. A kinetic model for subgrain superplasticity that invokes a balance between the arrival and emission rates of dislocations at low angle boundaries is presented. It explains several features of subgrain superplasticity. It also explains why ultrafine dispersoids of intermetallics appear to stabilize the subgrain structure in aluminum. Early work on the correlation between flow stress and the subgrain size in dynamic recrystallization of metals may also be consistent with the model.  相似文献   

20.
The behavior of wrought and cast polycrystalline Udimet 700 tested in static tension at 1200 K (1700†F) has been determined. An air environment decreases rupture life and ductility, except in very coarse-grained cast specimens, because of premature failure by stress-assisted grain boundary oxidation and cracking. In very coarse-grained cast specimens greater life and ductility are found in air than in vacuum, presumably due to the paucity of transverse grain boundaries and to some type of surface hardening effect. Wrought specimens exhibit greater grain boundary sliding, hence more cracking, shorter life, and lower ductility, than cast specimens in any environment. This is attributed to differences in grain boundary topography. Formerly Research Fellow, Department of Metallurgy and Materials Science and LRSM, University of Pennsylvania, Philadelphia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号