首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究通过对马弗炉、管式炉、平面火焰携带流反应器3种试验台在空气和富氧典型工况情况下产生的灰样进行灰熔点、XRD(X射线衍射分析)、XRF(X射线荧光光谱分析)、SEM(扫描电子显微镜分析)等多种测试,得到了富氧燃烧条件下神华煤结渣特性。与空气燃烧相比,富氧燃烧气氛对神华煤灰灰熔点影响不大;高氧浓度下灰熔点温度较低氧浓度下稍高;富氧气氛下结渣倾向明显比空气气氛下要高。但由于气氛的改变使得其中矿物质的赋存形态发生了改变。采用常用粘度和结渣指数预测不同气氛下神华煤结渣趋势,结果表明:空气条件下煤灰中Ca主要以CaO的形式存在,而富氧燃烧条件下产物中存在一定量CaCO_3。CaCO_3易黏结在一起,并会促进低灰熔点钙黄长石、钙长石的生成,从而加重结渣情况。  相似文献   

2.
O_2/CO_2富氧燃烧发电技术被认为是未来最具潜力的燃煤低碳电力技术,近年来国内外都得到了快速发展。由于O_2/CO_2富氧燃烧条件下锅炉烟气组份发生了很大变化(以CO_2+H_2O为主),煤灰在富氧燃烧锅炉炉内的沾污、沉积行为也将发生较大变化。为此,在3 MWth煤燃烧热态试验平台上对比研究了煤在空气燃烧和O_2/CO_2富氧燃烧条件下灰的沾污沉积特性。研究结果表明:煤在空气燃烧和O_2/CO_2富氧燃烧条件下各受热面沉积灰样的化学组成并没有显著变化,富氧燃烧条件下沉积灰样中SO_3和Fe_2O_3发生了富集,而Si_2O和Al_2O_3的含量相对偏低,O_2/CO_2富氧燃烧条件下沉积灰样的煤灰熔融温度其在比空气燃烧条件下的煤灰熔融温度约低200℃。  相似文献   

3.
介绍了选用榆林D矿区神华煤和平朔煤进行配煤试验,通过工业分析、灰熔点和灰成分测试分析研究混煤的灰熔融特性。掺入平朔煤能有效地改变神华煤高钙高铁的灰成分特点,提高神华煤的灰熔点。不同混配比例混煤的沉降炉燃烧结渣试验结果表明,平朔煤能降低神华煤的粘结性、熔融性和结渣趋势,且灰渣易吹落。  相似文献   

4.
针对煤燃烧过程中复杂气氛下灰熔融特性,开发了气氛可控的灰熔融特性测试平台,研究了反应气氛对两种不同Fe含量的煤样灰熔融特性的影响;在不同气氛的高温(1,100,℃)条件下制取灰样,并采用XRD(X射线衍射)分析,获得不同气氛下矿物演变的规律.结果表明,在空气中O_2转化为CO_2的过程中,灰熔点基本不变;在N_2、CO和CO_2体积分数分别为80%,、5%,和15%,的弱还原性气氛时,灰熔点大幅度降低,高铁煤降低更为明显;当气氛的还原性继续增强,灰熔点反而上升.在弱还原性气氛下含Fe矿物被还原,形成了低熔点Fe~(2+)化合物,是弱还原性气氛下灰熔点降低的主要原因,而在强还原性气氛下Fe~(2+)化合物继续被还原为Fe单质,使灰熔点上升.  相似文献   

5.
文章探讨了富磷添加剂对生物质燃烧过程中锅炉受热面积灰、结渣和腐蚀的作用机理,分析了其作用效果,考察了燃烧温度、燃烧气氛、生物质种类、Ca/K摩尔比、P/K摩尔比等主要因素对作用效果的影响规律。结果表明,富磷添加剂可以将烟气中的碱金属(主要是钾)和氯元素固定于底灰中,生成高熔点化合物,减轻碱金属熔融结渣和氯腐蚀。同时,添加剂改变了灰的物理和化学性质,使灰松软不易烧结,从而有效减轻了生物质燃烧过程中锅炉受热面的积灰、结渣和腐蚀。  相似文献   

6.
采用CAF digital imaging灰熔点测试仪和飞利浦分析仪器分别对稻草、木屑、谷壳等常见的生物质灰及其与煤掺烧后灰的熔融特性和灰成分进行了检测,通过软化温度DT,灰分的酸碱比(B/A)、硅铝比(SiO2/Al2O3)、硅比(G)、铁钙比(Fe2O3/CaO)等判别指数对单一生物质与煤掺烧的结渣特性进行了研究和分析.结果表明:稻草和谷壳与煤粉掺烧,灰熔点降低,引起结渣.但是掺烧木屑则不会出现灰熔点降低而导致结渣的问题.  相似文献   

7.
选取典型高灰熔点和低灰熔点煤种,利用X射线衍射仪(XRD)和扫描电镜能谱仪(SEMEDX)对高温气化条件下煤灰熔融行为及其矿物质演变规律进行了实验研究与量子化学计算.结果表明:高温下大量莫来石的生成是导致煤灰试样A具有高灰熔融温度的主要原因;煤灰试样B中由于存在较多的硬石膏、钠长石等低熔融矿物质,且CaO与莫来石反应生成钙长石与钙黄长石的化学反应在煤灰试样B熔融过程中起到了关键作用,从而使其具有低的熔融温度.经量子化学计算分析表明,由于莫来石易与电子接受体结合而难与电子给予体结合,在煤灰熔融过程中,莫来石易与煤灰中常见的碱性阳离子(Ca2+、Mg2+、Fe2+、Na+、K+)电子接受体反应生成其他物质,通过添加不同的阳离子可促使莫来石向不同矿物质转变,可以进一步控制煤灰的熔融变化过程及其熔融温度.  相似文献   

8.
采用上海同步辐射光源X射线吸收精细结构谱对还原性气氛下高灰熔点和低灰熔点煤灰样的熔融过程进行了观察.结果表明:煤灰熔融过程中Fe的价态形式由Fe3+向Fe2+转变;高灰熔点煤灰样在熔融过程中Fe的价态变化大多发生在900~1 300℃的温度段,Fe由四面体配位向八面体配位转变;低灰熔点煤灰样熔融时,一部分Fe首先形成四面体配位,然后再向八面体配位转变;Fe元素的这些形态变化在熔融过程开始之前就已经发生;低灰熔点煤灰样在熔融过程中第1层配位Fe—O结构发生了明显变化,而且只发生在完全熔融时刻,而高灰熔点煤灰样则没有明显观察到此配位结构的变化.  相似文献   

9.
将神华准东煤(神华煤)和天池能源准东煤(天池煤)与碱沟煤按照不同质量掺混比进行混合并制得灰样,将NaCl、CaO、Al2O3和SiO2按不同添加比例加入神华煤和天池煤并制成灰样,对上述混合灰样的熔融特性进行研究.结果表明:碱沟煤掺混2种准东煤后,随着准东煤质量掺混比的增大,混合灰各个灰熔点特征温度先降低后升高;随着灰样中Na含量增加,准东煤灰样的变形温度显著降低,软化温度、半球温度和流动温度先降低后趋于不变;当灰样中Na含量达到一定比例后,NaCl对准东煤灰熔融特性的影响明显减弱;CaO对准东煤灰熔点的影响较复杂,可以降低也可以提高灰熔点;随着Al2O3添加比例的增加,准东煤灰熔点先升高后急剧降低;随着SiO2添加比例的增加,神华煤灰样的变形温度先升高后降低,而天池煤灰样的变形温度逐步升高,其他3个特征温度均逐渐降低.  相似文献   

10.
准东煤储量大,但其燃烧过程中严重的结渣和沾污特性对电站锅炉的安全经济运行仍然是一个极大的挑战.本文通过对准东煤低温灰化样的TGA-DSC分析,并对不同温度段的准东煤及配煤灰样辅以XRF、XRD的矿物识别及显微形态和组分的FSEM-EDS分析,得到了主要矿物的相变温度段及发生烧结和熔融的温度.研究表明:灰中对沾污结渣有重要贡献的含钠矿物在800℃以前大部分蒸发,未蒸发的含钠矿物的存在温度小于1 150℃;在1 280℃存在的矿物晶相以Ca(Mg,Fe)-Al-O、Ca(Mg,Fe)-Si-O、Fe-Ca-O等三元系如钙铝石、铁钙铝石、黑钙铁石、变硅黑石、钙镁硅石和铁橄榄石等及四元系的Ca-Al-Si-O,如钙铝黄长石等为主;分解产物CaO及熔体Fe-S-O促进了低温共融体的形成;富含Al的煤样按1∶9被掺入准东煤灰中,提高了该灰样流动温度,推迟灰熔融结渣的发生.  相似文献   

11.
混煤煤质及燃烧特性研究   总被引:1,自引:0,他引:1  
针对混煤的煤质特性和燃烧特性开展实验研究,以指导燃煤电站科学合理的燃用混煤。研究结果表明,混煤的元素分析、工业分析及发热量满足质量加权平均,但混煤的可磨性和灰熔融特性不满足加权平均,低灰熔点煤中掺烧高灰熔点煤能显著提高混煤灰熔点,改善锅炉燃烧过程中的结渣问题,混煤灰熔点变化受到单煤灰成分的影响。热重实验分析表明,混煤的剧烈燃烧阶段与单煤存在明显差异,混煤的燃烧特性介于参与掺混的单煤之间,但不满足线性叠加,其燃烧过程存在着不同程度的交互作用。混煤的着火特性接近于易燃煤,而燃尽特性与难燃煤相近。除此以外,随着氧浓度的降低,混煤的燃烧特性明显变差,易燃煤对氧浓度的变化更加敏感。  相似文献   

12.
气流床气化炉采用液态排渣,高熔点煤灰不能满足排渣要求,煤灰的结渣问题和灰熔融性有很大关系。为研究CaO对煤灰熔融特性的影响规律,在煤灰中添加不同比例的CaO并对灰熔融温度进行测试。使用扫描电镜能谱仪对试样进行元素组成分析和微观形貌观察,使用X-射线粉末衍射仪分析灰样中矿物质变化。结果表明,随着CaO添加比例的增大,煤灰熔融温度先降低后增高。CaO添加比例从0增加到30%时,高温下高熔点的钙长石含量降低,生成大量低熔点的钙铁榴石,灰熔融温度逐渐降低。CaO添加比例继续增加,高熔点的硅钙石含量增多,灰熔融温度逐渐升高。对本研究煤种,CaO添加比例为30%时,降低灰熔融温度效果最好。  相似文献   

13.
气化条件下混煤灰熔融特性及矿物质演变规律   总被引:2,自引:0,他引:2  
通过实验研究了高温气化条件下混煤灰的熔融特性及矿物质演变规律.结果表明,气化条件下混煤灰熔融温度的变化规律并不与配煤比例成线性关系,而与相应三元相图的液相线温度具有良好的相似性;随着低灰熔点煤灰的加入,混煤灰在三元相图上的位置逐渐由莫来石结晶区向钙长石结晶区移动,并在二元共晶线或三元共晶点附近熔融温度的变化最为显著,且低于周围位置的熔融温度;由于低灰熔点煤灰中含有较多的硬石膏、辉石、长石等矿物,高温气化条件下能分解成CaO、FeO等助熔矿物,这些助熔矿物能够与高灰熔点煤灰中的莫来石、石英等发生反应生成钙长石、铁橄榄石等低熔融矿物,从而降低了高灰熔点煤灰的熔融温度.  相似文献   

14.
选用高硫长广煤为试验煤种、分析纯 CaO 和 MgO 为添加剂,按照设定的配料方案配制为混合煤粉.依据 GB/T 219-1996煤灰熔融特性测试方法,使用 SE-AF 智能灰熔点测试仪对混合煤粉的灰熔点进行了测量.结果表明:随混合煤粉中 CaO 添加质量分数的逐渐增加,混合煤粉灰熔融特性温度呈现 V 型变化规律;按照联产 Q 相水泥熟料配料方案配制的混合煤粉煤灰的结渣趋势程度属于轻微,较长广煤的结渣趋势程度有所降低.对软化温度下混合煤粉煤灰的矿物组成进行了 XRD 分析,并利用 CaO-Al2O3一SiO2 三元系统相图,进一步分析了混合煤粉熔融特性温度变化机理.结果表明:随着混合煤粉中 CaO 添加质量分数的变化,煤灰矿物组成中不同程度地出现低温共融体是煤灰熔融特性温度变化的原因.  相似文献   

15.
煤中矿物质在弱还原气氛中加热时的行为特性研究   总被引:3,自引:0,他引:3  
何惠娟 《动力工程》1991,11(4):26-30
煤在炉膛内燃烧时,容易引起局部弱还原性气氛,促使灰的熔点降低,造成炉膛结渣,本文主要论述煤在弱还原气氛中的不同温度下加热时,煤中矿物质的物相变化过程,讨论了在弱还原性气氛下煤中矿物质的特性,找出了引起炉膛结渣的矿物组分.  相似文献   

16.
针对准东煤在实际电厂燃烧过程中的强结渣、强沾污问题,选取了典型的高Ca、高Na南矿煤为研究对象。在0.4 MW燃烧试验台上进行了准东煤结渣特性试验研究,并通过添加不同比例的将军庙煤来研究混烧对煤灰结渣、沾污特性的影响。研究结果表明:纯烧南矿煤时结渣较为严重,灰渣呈现灰褐色,且质地较为疏松,其不同区域的灰渣主要以Ca的低温化合物为主;沾污样呈现亮白色,主要以硫酸钠为主。添加将军庙煤后,煤灰中的Al、Si与Ca、Na发生强烈的交互反应,生成高熔点的硅铝酸盐类物质,结渣和沾污倾向大为减缓。最终结果表明:实际电厂再燃用南矿煤时,可部分掺烧(10%~20%)将军庙煤,能够明显减缓煤灰的结渣沾污强度。  相似文献   

17.
燃煤锅炉受热面结渣问题一直是困扰电站锅炉安全和经济运行的重要因素.因b选取三种不同的煤种在不同气氛条件下进行灰熔融性试验的基础上对煤种的结渣特性作出分析.分析结论为还原性环境气氛可显著降低煤灰熔融温度,从而使煤灰结渣特性增强;单一评判法与多指标综合评判法对煤灰结渣特性进行判定,为避免锅炉受热面结渣提供理论依据.在锅炉实际运行中,因保证炉内受热面周边氧化性气氛,降低煤灰结渣特性,减少锅炉受热面结渣的可能性.  相似文献   

18.
选取新疆准东煤田高钠煤(五彩湾煤和天池煤)为研究对象,研究了准东煤中碱金属钠的赋存形态和钠基化合物对煤灰熔融特性影响机制.向低温灰中添加不同比例的Na_2O然后制取其高温混灰,利用X射线衍射仪分析矿物质组分在不同成灰温度下演化规律,探究碱金属钠对准东煤灰熔融特性的影响机制.结果表明:准东煤中钠以水溶钠形式为主;天池煤随着钠含量的增加,灰熔融温度先降低后趋于稳定;五彩湾煤随着钠含量的增加,灰熔融温度先降低后升高.天池煤掺混10%,Na_2O导致灰熔融温度降低,是由于煤灰中白云石、氢氧化钙分解产生大量CaO,碱金属钠促进CaO与煤灰中Si、Al等反应生成含钙钠的低温共熔体,且有低熔点矿物无水芒硝生成;五彩湾煤掺混10%,Na_2O导致灰熔融温度降低,是由于煤灰中新生成低熔点的钙铁辉石和无水芒硝,且碱金属钠促进钙铝黄长石和镁黄长石等含钙矿物质的低温共熔反应,掺混过量Na_2O导致灰熔融温度升高,这是由于煤灰中生成了大量高熔点矿物质.  相似文献   

19.
李意  盛昌栋 《动力工程》2008,28(2):259-264
采用57Fe M(o)ssbauer谱仪对多种典型神华煤样及其在沉降炉中燃烧生成的煤灰样中的含铁成分进行定量测定和分析,研究了神华煤中含铁矿物的存在形式、含量及其在煤粉燃烧条件下的转化.研究表明,神华煤样中含铁矿物质包括黄铁矿、菱铁矿和含Fe2 的伊利石;黄铁矿和菱铁矿在燃烧过程中主要转化成氧化物,但也有相当一部分与硅酸盐反应生成了含铁玻璃体,从而有利于结渣的形成和发展;燃烧过程中黄铁矿及菱铁矿发生了破碎,导致破碎峰附近尺寸的颗粒中出现了Fe2O3的富集.  相似文献   

20.
李婷婷  黄艳琴  袁洪友 《太阳能学报》2018,39(12):3490-3498
基于电容测试方法并辅以莫氏硬度对麦秆灰的烧结熔融特性进行研究。与常规热重-差热分析仪(TGDSC)测试和灰熔点测试方法相比,该方法测试便捷,得到的烧结温度(835℃)贴近气化炉内真实烧结温度。在此基础上,进一步考察温度、加热时间、气氛等影响麦秆灰熔融特性的条件。研究发现:温度是影响麦秆灰结渣与否的关键因素,在不同温度下,灰组分变化主要包括SiO_2晶体的转变以及硅铝酸盐低温共熔体的生成,到达熔融温度990℃后,长石类矿物质特征峰消失,可能与玻璃体的生成相关;加热时间不影响烧结程度,N_2气氛下麦秆灰在烧结温度下的理论烧结时间为5 min,成钾长石的反应速率高于钙长石;在CO_2、N_2、空气3种气氛中,空气气氛下烧结温度略低,主要是因为在氧化性气氛下,麦秆灰更易于形成硅酸钾等低温共熔体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号