共查询到20条相似文献,搜索用时 31 毫秒
1.
不确定近邻的协同过滤推荐算法 总被引:24,自引:0,他引:24
文中围绕传统的协同过滤推荐算法存在的局限性展开研究,提出一种不确定近邻的协同过滤推荐算法UNCF.根据推荐系统应用的实际情况,对于推荐的每一种场景其实都是不可预先确定的,而文中算法基于用户以及产品的相似性计算,自适应地选择预测目标的近邻对象作为推荐群,同时计算推荐群中推荐把握概率较高的信任子群,最后通过不确定近邻的动态度量方法,来对预测结果进行平衡的推荐.通过实验结果表明,该算法可以有效平衡用户群以及产品群推荐结果所带来的不稳定影响,有效缓解用户评分数据稀疏的情况所带来的问题,并在多个实验数据中,提高了推荐系统的预测准确率. 相似文献
2.
基于时间加权的协同过滤算法研究 总被引:2,自引:0,他引:2
协同过滤算法是目前个性化推荐系统中应用最成功的推荐算法之一,但传统的算法没有考虑用户兴趣漂移的问题,导致推荐系统的推荐质量下降.针对这个问题,提出了基于时间加权的协同过滤算法.实验表明,改进的算法提高了推荐系统的推荐质量. 相似文献
3.
协同过滤是推荐系统中最有效的方法之一,推荐算法评分预测的精确性受到最近邻居的提取以及项目或用户相似度计算的两个关键点的影响。根据用户行为相似性原理,采用最大交集法提取与当前项目共同评分最多的邻居作为最佳邻居候选集,同时提出了加权余弦相似性方法对相似度进行计算,并采用粒子群优化算法(PSO)对权重进行优化求解。实验结果表明,采用上述方法相对于传统方法来说,能较好地改善评分预测的精确度,有效地提高推荐系统的推荐质量。 相似文献
4.
基于时间加权的协同过滤算法 总被引:1,自引:0,他引:1
协同过滤是个性化推荐系统中采用最广泛的推荐技术,但已有的方法是将用户不同时间的兴趣等同考虑,时效性不足。针对此问题,提出了一种改进的协同过滤算法,使得越接近采集时间的点击兴趣,在推荐过程中具有更大的权值,从而提高了推荐的准确性。 相似文献
5.
针对现有的协同过滤推荐算法中存在评分数据稀疏和用户兴趣动态变化的问题,提出了融合时间加权信任与用户偏好的协同过滤算法.考虑到用户评分时间的不均匀,对时间权重进行改进,并将其融入到直接信任计算中,缓解用户兴趣动态变化的问题.通过信任传递得到的间接信任以及建立用户对项目标签的偏好矩阵得到用户之间的偏好相似度来缓解数据的稀疏... 相似文献
6.
协同过滤推荐系统的近邻选择环节中不仅没有考虑目标项目对用户间相似性计算的影响,而且也未考虑邻居用户对目标用户的推荐贡献能力,导致既降低了相似性计算的准确性,也提高了近邻集合中伪近邻的比例。针对这些问题,提出了一种基于熵优化近邻选择的协同过滤推荐算法。算法首先使用巴氏系数计算项目间相似性,并以此为权重加权计算用户间相似性。其次引入熵描述用户评分分布特性,根据评分分布差异性衡量邻居用户的推荐贡献能力。最后,利用双重准则共同计算推荐权重,并构建近邻集合。实验结果表明该算法能够在不牺牲时间复杂度的条件下准确地选取近邻集合,提升推荐准确度。 相似文献
7.
经典的Slope One算法采用线性回归模型对目标项目进行预测评分,但在项目评分偏差表构建过程中产生了部分噪声数据,影响了算法的推荐性能。为了解决该问题,建立了一种基于局部近邻Slope One协同过滤推荐算法。算法计算了当前活跃用户针对不同推荐商品的近邻用户集,其邻居用户集根据目标项目的不同而动态变化;根据活跃用户关于不同目标项目的邻居用户数据来进一步优化项目之间的平均偏差,进而产生推荐。对比实验说明,该算法在MovieLens数据集上具有较高推荐精度。 相似文献
8.
9.
10.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
11.
针对传统的基于余弦相似性的协同过滤算法中推荐集选取方法进行了改进,设计了一种新的评分方式预测用户对未评价项目的评分,从而增强了推荐的合理性。实验结果表明,该算法同传统协同过滤算法相比能显著提高推荐精度。 相似文献
12.
基于用户聚类的电子商务推荐系统 总被引:4,自引:0,他引:4
协同过滤是推荐系统中采用最为广泛和成功的推荐技术,但随着电子商务系统用户数目和商品数目的增加,在整个用户空间上搜索目标用户的最近邻居的耗时也急剧增加,导致系统性能下降.提出了一种基于用户项目类偏好值矩阵聚类的合作推荐方法,解决了"冷开始"问题,并且由于只在目标用户所属类别中搜索其最近邻居,减少了搜索空间,有效地提高推荐系统的实时响应速度. 相似文献
13.
目前基于评论的推荐算法大多都忽略了用户(商品)的个性化信息来对评论进行编码.对此提出一种单词级别、评论级别的个性化注意力机制,分别对单词和评论进行个性化编码.设计一种基于门控机制的融合方式,来更好地融合用户和商品的隐向量来提高评分预测性能.在3组公开数据集上进行对比实验,以预测评分的均方误差(MSE)作为评估指标,验证... 相似文献
14.
Byeong Man Kim Qing Li Chang Seok Park Si Gwan Kim Ju Yeon Kim 《Journal of Intelligent Information Systems》2006,27(1):79-91
With the development of e-commerce and the proliferation of easily accessible information, recommender systems have become
a popular technique to prune large information spaces so that users are directed toward those items that best meet their needs
and preferences. A variety of techniques have been proposed for performing recommendations, including content-based and collaborative
techniques. Content-based filtering selects information based on semantic content, whereas collaborative filtering combines
the opinions of other users to make a prediction for a target user. In this paper, we describe a new filtering approach that
combines the content-based filter and collaborative filter to capitalize on their respective strengths, and thereby achieves
a good performance. We present a series of recommendations on the selection of the appropriate factors and also look into
different techniques for calculating user-user similarities based on the integrated information extracted from user profiles
and user ratings. Finally, we experimentally evaluate our approach and compare it with classic filters, the result of which
demonstrate the effectiveness of our approach. 相似文献
15.
Panagiotis Symeonidis Alexandros Nanopoulos Apostolos N. Papadopoulos Yannis Manolopoulos 《Expert systems with applications》2008,34(4):2995-3013
Recommender systems base their operation on past user ratings over a collection of items, for instance, books, CDs, etc. Collaborative filtering (CF) is a successful recommendation technique that confronts the “information overload” problem. Memory-based algorithms recommend according to the preferences of nearest neighbors, and model-based algorithms recommend by first developing a model of user ratings. In this paper, we bring to surface factors that affect CF process in order to identify existing false beliefs. In terms of accuracy, by being able to view the “big picture”, we propose new approaches that substantially improve the performance of CF algorithms. For instance, we obtain more than 40% increase in precision in comparison to widely-used CF algorithms. In terms of efficiency, we propose a model-based approach based on latent semantic indexing (LSI), that reduces execution times at least 50% than the classic CF algorithms. 相似文献
16.
《Advanced Engineering Informatics》2015,29(4):830-839
Collaborative filtering is a widely used recommendation technique and many collaborative filtering techniques have been developed, each with its own merits and drawbacks. In this study, we apply an artificial immune network to collaborative filtering for movie recommendation. We propose new formulas in calculating the affinity between an antigen and an antibody and the affinity of an antigen to an immune network. In addition, a modified similarity estimation formula based on the Pearson correlation coefficient is also developed. A series of experiments based on MovieLens and EachMovie datasets are conducted, and the results are very encouraging. 相似文献
17.
协同过滤算法是个性化推荐系统中应用最广泛的一种推荐技术。随着用户数量和项目数量的增加,数据的稀疏性成为影响推荐质量的重要因素。为此,将传统相似度指标修正余弦相似性、Pearson相似度,与结构相似度指标Jaccard系数、Salton系数、IUF系数进行组合,提出6种组合相似度。在Movie Lens上的实验表明,基于组合相似度的优化协同过滤算法在平均绝对偏差MAE、均方根误差RMSE、召回率、覆盖率和确率等性能上都有了较大提高,提高了推荐质量。 相似文献
18.
19.
为了解决稀疏性问题和可扩展性问题,提高推荐的质量,在传统协同过滤算法的基础上,引入产品分类技术与Web使用挖掘技术.在详细阐述算法的基础上,通过实验数据验证该算法的推荐性能.实验结果表明,引入产品分类和Web使用挖掘技术后,协同过滤算法的性能有了显著的提高,很好地改善了其稀疏性问题和可扩展性问题. 相似文献
20.
在推荐系统中用户评分矩阵通常含有大量的遗漏值.这严重影响了协同推荐算法的推荐精度.常用的解决方法是使用缺省值或预测值代替这些遗漏值.通过实验比较了使用不同的替代值的效果,并提出了一种结合矩阵划分和评分预测值的方法.实验结果显示,通过这种方法获得的替代值可以使推荐系统达到更好的推荐质量,尤其是在评分矩阵非常稀疏的情况下. 相似文献