首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
确定时间序列的相似性匹配方法都没有考虑数据的不确定性,而现实世界中诸如温度传感器等设备采集到的数据往往是不确定的,并且两条不确定时间序列之间的距离也是不确定的,所以现有的确定时间序列的相似性匹配方法不适用于这些领域。针对此问题,提出了基于统计学的规约算法,并且基于该算法提出了不确定时间序列相似性匹配的两种新型算法。在规约过程中,规约算法优化了不同背景下不确定时间序列的小概率点和奇异点的处理。在匹配过程中,首先提出了圆环匹配算法,它通过构建匹配圆环完成相似性匹配,并且通过多次重启提高相似性匹配的准确度和效率;然后在规约算法的基础上,提出了期望匹配的改进算法,它通过增加包络约束消除期望匹配算法中出现的误判问题。  相似文献   

2.
确定性时间序列的相似性匹配方法都没有考虑数据的不确定性,而现实世界中传感器采集到的数据往往是不确定的,现有的时间序列的相似性匹配方法不适用于这些领域.针对此问题,将不确定性时间序列做预处理,把它分为横向时间维和纵向概率维,首先把给定的不确定时间序列用Haar小波变换进行压缩变换,在此基础上,对得到的不确定性时间序列概率维作纵向处理,提出一种选代表方法,即采用概率最大法、均值法等选出一条确定的时间序列.通过这2种预处理后,对得到的确定性时间序列进行降维和索引,根据查询序列和数据库中的时间序列中的各自的不确定性进行组合,分别提出对应组合的相似性匹配算法.  相似文献   

3.
不确定时间序列的每个时间点上对应一个可能取值的集合,无法给出其确定值,这种不确定性给时间序列降维处理和相似性匹配带来巨大挑战,现有的时间序列降维方法和相似性匹配算法已经无法适用。针对此问题,提出了描述统计模型,将不确定时间序列归约为3条确定时间序列,通过离散傅里叶变换(discrete Fou-rier transform,DFT)、离散余弦变换(discrete cosine transform,DCT)、离散小波变换(discrete wavelet trans-form,DWT)对模型下不确定时间序列降维;根据模型特点,提出了以观察值区间和区间集中趋势为核心的相似性匹配算法。经过实验验证,描述统计模型下DCT和DWT有良好的降维效果,提出的相似匹配算法与现有算法相比提高了匹配准确率。  相似文献   

4.
多元时间序列特征降维方法研究   总被引:2,自引:0,他引:2  
针对常见的降维方法难以有效地保留多元时间序列主要特征的问题,分析了传统PCA方法在多元时间序列降维中的局限性;提出一种基于共同主成分分析的线性降维方法;把共同主成分与核技巧相结合,通过数学推导,将其拓展为基于共同核主成分分析的非线性降维方法;最后分析两种方法的降维有效性.与传统PCA方法相比,基于共同核主成分分析的降维方法可以表达变量间的非线性关系、能够选取合适的核函数和形状参数,因此降维手段更为灵活、对数据的适应性更强.实验结果表明,本文提出的降维方法能够更有效地对多元时间序列进行降维.  相似文献   

5.
李海林  梁叶 《控制与决策》2020,35(3):629-636
针对传统主成分分析及相关方法对多元时间序列特征表示的局限性,以及降维效果对数据相似性度量质量的影响,从数据形态特征的角度出发,提出一种关键形态特征的多元时间序列降维方法.利用动态时间弯曲方法找出训练集每个类别的中心多元时间序列,根据形态特征找出每个中心多元时间序列的关键特征变量分量的重要度,使用重要度提取若干个关键特征变量分量,达到数据降维的目的.实验结果表明,与传统方法相比,所提方法能够有效地根据形态特征对多元时间序列进行降维,并且能够取得更好的分类效果.  相似文献   

6.
针对常见的降维方法难以有效保留多元时间序列主要特征的问题,分析了传统主成分分析(PCA)方法在多元时间序列降维中的局限性,提出一种基于共同主成分分析的多元时间序列降维方法,并通过仿真实验比较了两种方法的降维有效性和计算复杂度.实验结果表明,所提出的降维方法能够以相对较小的计算代价,更有效地对多元时间序列进行降维.  相似文献   

7.
多元时间序列具有高噪声、非线性和海量的特点,但传统基于距离的降维方法难以有效的应对噪声带来的子空间偏移和数据的爆炸式增长。在基于角度优化的全局嵌入算法和共同核主成分分析方法的基础上,提出了一种基于角度优化的共同核主成分分析方法,并将该方法依托Hadoop平台进行了并行化改进,有效解决了噪音带来的子空间偏移和海量数据带来的巨大运算量问题。通过实验,对算法的有效性、运行效率及伸缩性进行了验证,结果表明提出的方法可以有效地对含有噪声的多元时间序列进行降维;基于Hadoop平台并行后的方法具有良好的运行效率和伸缩性。  相似文献   

8.
李海林  杨丽彬 《控制与决策》2013,28(11):1718-1722

数据降维和特征表示是解决时间序列维灾问题的关键技术和重要方法, 它们在时间序列数据挖掘中起基础性作用. 鉴于此, 提出一种新的时间序列数据降维和特征表示方法, 利用正交多项式回归模型对时间序列实现特征提取, 结合特征序列长度对时间序列的拟合分析结果, 运用奇异值分解方法对特征序列进一步降维处理, 进而得到保存大部分信息且维数更低的特征序列. 数值实验结果表明, 新方法可以在维度较低的特征空间下取得较好的数据挖掘聚类和分类效果.

  相似文献   

9.
Shapelet序列分析为时间序列分类提供了一种快速分类的方法,但Shapelet序列抽取速度很慢,限制了它的应用范围。为了加快 Shapelet 序列的提取,提出了一种基于主成分分析的改进方法。首先运用主成分分析法(PCA)对时间序列数据集进行降维,采用降维后的数据表示原数据,然后对降维后的数据提取出最能代表类特征的Shapelet序列。实验结果表明:本方法在保证分类准确率的前提下,提高了运算速度。  相似文献   

10.
符号化表示是一种有效的时间序列降维技术,其相似性度量是诸多挖掘任务的基础。基于SAX(sym-bolic aggregate approximation)的距离MINDIST_PAA_iSAX不满足对称性,在时间序列挖掘中具有局限性,提出了对称的度量Sym_PAA_SAX,且下界于欧拉距离。在真实数据集和合成数据集上的实验说明下界紧密性较好,相似搜索错报率较低。  相似文献   

11.
The endeavor of the present paper is to investigate the existence of chaotic behavior in the underlying dynamics of the total ozone concentration over Arosa, Switzerland (9.68°E, 46.78°N). For this purpose, the correlation dimension method is employed to the mean monthly total ozone concentration data collected over a period of 40 years (1932–1971) at the above location. Based on the observation of a low correlation dimension value of 1 for this data set, the study reports the existence of low-dimensional chaotic behavior in the ozone concentration dynamics.  相似文献   

12.
13.
    
Covariance of clean signal and observed noise is necessary for extracting clean signal from a time series.This is transferred to calculate the covariance of observed noise and clean signal’s MA process,when the clean signal is described by an autoregressive moving average (ARMA) model.Using the correlations of the innovations data from observed time series to form a least-squares problem,a concisely autocovariance least-square (CALS) method has been proposed to estimate the covariance.We also extended our work to the case of unknown MA process coefficients.Comparisons between Odelson’s autocovariance least-square (ALS) estimation algorithm and the proposed CALS method show that the CALS method could get a much more exact and compact estimation of the covariance than ALS and its extended form.  相似文献   

14.
时间序列的表示与分类算法综述   总被引:1,自引:0,他引:1  
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内,依照给定的采样率,对某种潜在过程进行观测的结果。时间序列数据广泛地存在于商业、农业、气象、生物科学以及生态学等诸多领域,从时间序列中发现有用的知识已成为数据挖掘领域的研究热点之一。在时间序列表示方面,主要介绍了非数据适应性表示方法、数据适应性表示方法和基于模型的表示方法;针对时间序列的分类方法,着重介绍了基于时域相似性、形状相似性和变化相似性的分类算法,并对未来的研究方向进行了进一步的展望。  相似文献   

15.
一种基于关键点的时间序列聚类算法   总被引:1,自引:1,他引:0  
谢福鼎  李迎  孙岩  张永 《计算机科学》2012,39(3):160-162
隐私保护数据挖掘是在不精确访问原始数据的基础上,挖掘出准确的规则和知识。针对分布式环境下聚类挖掘算法的隐私保护问题,提出了一种基于完全同态加密的分布式聚类挖掘算法(FHE-DK-MEANS算法)。理论分析和实验结果表明,FHE-DK-MEANS算法不仅具有很好的数据隐私性,而且保持了聚类精度。  相似文献   

16.
In the present paper, a Nonlinear Set Membership prediction method previously proposed by the authors is applied to a river flow prediction problem. The method does not require the choice of the functional form of the model used for prediction, but assumes a bound on the gradient norm of the regression function defining the model. The method is used for the univariate prediction of the time series consisting of the mean daily discharges of the Dora Baltea river in northern Italy, taken from year 1941 to 1979. The obtained prediction performances are compared with those obtained by means of neural networks and of local linear approximation techniques used by other authors for this time series.  相似文献   

17.
Yo  Hiroyuki 《Neurocomputing》2009,72(16-18):3789
Effects of additive noise on a series of the periods of oscillations in unidirectionally coupled ring neural networks of ring oscillator type are studied. Kinematical models of the traveling waves of an inconsistency, i.e. the successive same signs in the states of adjacent neurons in the network, are derived. A series of the half periods in the network of N neuron is then expressed by the sum of N sequences of the N-first order autoregressive process, the process with the spectrum of exponential type and the first-order autoregressive process. Noise and the interaction of the inconsistency cause characteristic positive correlations in a series of the half periods of the oscillations. Further, an experiment on an analog circuit of the ring neural oscillator was done and it is shown that correlations in the obtained periods of the oscillations agree with the derived three expressions.  相似文献   

18.
This study sets out to analyze the stages of water bodies in the Amazon basin derived from the processing of ERS-2 and ENVISAT satellite altimetry data. For ENVISAT, GDR measurements for both Ice-1 and Ice-2 tracking algorithms were tested. For ERS-2, the Ice-2 data produced by the OSCAR project was used. Water level time series over river segments of very different width, from several kilometers to less than a hundred of meters, were studied. The water level time series that can be derived from narrow riverbeds are enhanced by off-nadir detections. Conversely, the off-nadir effect may degrade the series over large bodies if not properly accounted for. Comparison at crossovers and with in situ gauges shows that the quality of the series can be highly variable, from 12 cm in the best cases and 40 cm in most cases to several meters in the worse cases. Cautious data selection is clearly a key point to achieve high quality series. Indeed, low quality series mostly result from inclusion of outliers in the data set finally retained for the computation of the series. Ice-2 and Ice-1 tracking algorithms in the ENVISAT data perform almost equally well. ENVISAT altimetry is clearly an improvement on ERS-2 altimetry.  相似文献   

19.
    
Appropriate selection of inputs for time series forecasting models is important because it not only has the potential to improve performance of forecasting models, but also helps reducing cost in data collection. This paper presents an investigation of selection performance of three input selection techniques, which include two model-free techniques, partial linear correlation (PLC) and partial mutual information (PMI) and a model-based technique based on genetic programming (GP). Four hypothetical datasets and two real datasets were used to demonstrate the performance of the three techniques. The results suggested that the model-free PLC technique due to its computational simplicity and the model-based GP technique due to its ability to detect non-linear relationships (demonstrated by its relatively good performance on a hypothetical complex non-linear dataset) are recommended for the input selection task. Candidate inputs which are selected by both these recommended techniques should be considered as significant inputs.  相似文献   

20.
时间序列预测方法综述   总被引:1,自引:0,他引:1  
时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内依照给定的采样率对某种潜在过程进行观测的结果。时间序列数据本质上反映的是某个或者某些随机变量随时间不断变化的趋势,而时间序列预测方法的核心就是从数据中挖掘出这种规律,并利用其对将来的数据做出估计。针对时间序列预测方法,着重介绍了传统的时间序列预测方法、基于机器学习的时间序列预测方法和基于参数模型的在线时间序列预测方法,并对未来的研究方向进行了进一步的展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号