共查询到20条相似文献,搜索用时 46 毫秒
1.
搅拌摩擦焊在焊接钛合金这类高熔点金属方面具有很大优势,但是搅拌头的磨损一直是其一大难点。对钛合金搅拌摩擦焊中的搅拌头结构、材料选择进行了讨论,认为圆锥形搅拌针综合性能较好,而在材料选择方面,认为目前应用前景较好的是钨铼合金,但不同材料的组合可能更符合未来发展的方向。为了研究搅拌头的磨损机理及如何减小磨损,列举了几种辅助焊接工艺及目前应用较广的模拟仿真,指出辅助焊接工艺可减小搅拌头磨损,但目前工艺不完善等问题依然存在,需要进一步优化,包括模拟仿真在内,对于钛合金搅拌摩擦焊搅拌头结构、材料优化、磨损机理、辅助焊接工艺等研究均较少,限制了其研究进展及应用。 相似文献
2.
3.
4.
刘光铮 《中国材料科技与设备》2011,(3):60-63
文中介绍了铝基复合材料搅拌摩擦焊搅拌头材料选择和结构设计方案。根据铝基复合材料复杂的微观和宏观结构,选定钢结硬质合金GT35制造搅拌头,并与选用工具钢制作的普通搅拌头进行对比。对比结果表明,普通搅拌头焊后磨损严重,焊缝质量较差。对搅拌头形状和尺寸进行了设计:最初的“一字凹凸槽”设计存在不同心德患,给加工制造造成困难;后改为分体式搅拌头,采用螺纹连接。采用这种搅拌头能得到表面光滑,宏观形貌良好的接头。 相似文献
5.
6.
搅拌摩擦焊焊缝腐蚀研究进展 总被引:1,自引:0,他引:1
搅拌摩擦焊是一项新型固态连接技术,近年来在航空航天、汽车工业等领域得到了广泛应用。其工艺特性导致各焊缝微区组织和应力状况不同,从而展现出不同的腐蚀行为。综述了近年来国内外搅拌摩擦焊焊缝腐蚀行为的研究进展,分析了影响焊缝腐蚀的因素,展望了发展趋势。 相似文献
7.
8.
9.
10.
通过对镁合金AZ31进行搅拌摩擦焊获得了成型良好的焊缝,采用金相显微镜对焊缝组织进行了分析,并采用透射电镜和X射线能谱仪对晶粒形貌和晶界析出的第二相进行了观测分析。结果表明,镁合金搅拌摩擦焊可以获得组织致密的焊缝,焊缝区域根据组织特点可以分为焊核区、热机影响区和热影响区;焊核区"洋葱环"之间呈现层片状结构,晶界强化相数量减少且尺寸变小;热机影响区在前进侧和焊核区有明显的分界,晶粒呈细长条状,后退侧和焊核区分界相对不明显,晶粒变形较小;热影响区在前进侧较窄,组织与母材组织相比变化较小,而后退侧热影响区较宽,晶粒尺寸有所增长,这与搅拌摩擦过程中金属切削迁移的堆积过程有关。 相似文献
11.
This paper reports the effect of friction stir welding(FSW)process parameters on tensile strength of cast LM6 aluminium alloy.Joints were made by using dierent combinations of tool rotation speed,welding speed and axial force each at four levels.The quality of weld zone was investigated using macrostructure and microstructure analysis.Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 900 r/min,a weldin... 相似文献
12.
Novel friction stir welding (FSW) technique, characterised by big concave upper and small convex lower shoulders, for aluminium hollow extrusion was studied. Assisted with the lower shoulder, root flaws due to the lack of tool penetration have been eliminated. The tensile strength increased with increasing welding speed. As the welding speed increases from 50 to 200 mm min?1, the width of the welding nugget zone (WNZ) decreases, and the ductile fractured location occurred at WNZ instead of heat affected zone (HAZ) adjacent to thermomechanically affected zone (TMAZ). The interface between the TMAZ and HAZ exhibited the lowest microhardness. The results indicated that the novel FSW method has the potential to join tubular structures and hollow profiles widely used in transportation industries. 相似文献
13.
The effect of the welding speed and the rotation speed on the microstructure in the stir zone has been investigated by measuring the Si particle distribution in the ADC12 alloy. The stir zone has fine recrystallized grains without dendritic structures, and the eutectic Si was uniformly dispersed in the stir zone. The size of the Si particles was statistically determined in the stir zone using image processing. The number of finer Si particles, which is formed by stirring of the tool probe, increases during the FSW. Finer Si particles are distributed more in the bottom than in the other regions, though the size of the Si particles in the base metal is the same in all the regions. The size of the Si particles decreases with increasing welding speed. However, it is not significantly affected by the rotation speed. 相似文献
14.
15.
Process force and tensile properties in friction stir welding of AA2024 sheets were studied. Results show that the forces present a periodic variation with the same periodicity which is nearly equal to the time of one tool rotation, and thus it only depends on rotation speed. With increasing welding speed the forces increase gradually, while with increasing rotation speed the forces first decrease and then increase. Joints with superior strength-ductility synergy are produced at 900?rev?min?1–300?mm?min?1 and 1000?rev?min?1–350?mm?min?1. These joints experience nearly the same peak temperature and axial force. As heat input increases the failure initiates from the interface between nugget zone (NZ) and thermo-mechanically affected zone to heat-affected zone continuing to NZ. 相似文献
16.
The main goal of this study is optimization of residual stresses produced by friction stir welding (FSW) of 5086 aluminum plates. Taguchi method is employed as statistical design of experiment (DOE) to optimize welding parameters including feed rate, rotational speed, pin diameter and shoulder diameter. The optimization process depends on effect of the welding parameters on longitudinal residual stress, which is measured by employing ultrasonic technique. The ultrasonic measurement method is based on acoustoelasticity law, which describes the relation between acoustic waves and internal stresses of the material. In this study, the ultrasonic stress measurement is fulfilled by using longitudinal critically refracted (LCR) waves which are longitudinal ultrasonic waves propagated parallel to the surface within an effective depth. The ultrasonic stress measurement results are also verified by employing the hole-drilling standard technique. By using statistical analysis of variance (ANOVA), it has been concluded that the most significant effect on the longitudinal residual stress peak is related to the feed rate while the pin and shoulder diameter have no dominant effect. The rotational speed variation leads to changing the welding heat input which affects on the residual stress considerably. 相似文献
17.
Friction stir welding (FSW) is a solid state welding process for joining aluminum alloys and has been employed in aerospace, rail, automotive and marine industries for joining aluminium, magnesium, zinc and copper alloys. In FSW, the base metal properties such as yield strength, ductility and hardness control the plastic flow of the material under the action of rotating non-consumable tool. The FSW process parameters such as tool rotational speed, welding speed, axial force, etc. play a major role in deciding the weld quality. In this investigation, an attempt has been made to establish relationship between the base material properties and FSW process parameters. FSW joints have been made using five different grades of aluminium alloys (AA1050, AA6061, AA2024, AA7039 and AA7075) using different combinations of process parameters. Macrostructural analysis has been done to check the weld quality (defective or defect free). Empirical relationships have been established between base metal properties and tool rotational speed and welding speed, respectively. The developed empirical relationships can be effectively used to predict the FSW process parameters to fabricate defect free welds. 相似文献
18.
The aim of the present work is to optimise the welding parameters for friction stir spot welded non-heat-treatable AA3003-H12 aluminium alloy sheets using a Taguchi orthogonal array. The welding parameters, such as the tool rotational speed, tool plunge depth and dwell time, were determined according to the Taguchi orthogonal table L9 using a randomised approach. The optimum welding parameters for the peak tensile shear load of the joints were predicted, and the individual importance of each parameter on the tensile shear load of the friction stir spot weld was evaluated by examining the signal-to-noise ratio and analysis of variance (ANOVA) results. The optimum levels of the plunge depth, dwell time and tool rotational speed were found to be 4.8 mm, 2 s and 1500 rpm, respectively. The ANOVA results indicated that the tool plunge depth has the higher statistical effect with 69.26% on the tensile shear load, followed by the dwell time and rotational speed. The tensile shear load of the friction stir spot welding (FSSW) joints increased with increasing plunge depth. Additionally, examination of the weld cross-sections, microhardness tests and fracture characterisation of the selected friction spot welded joints were conducted to understand the better performance of the joints. All the fractures of the joints during tensile testing occurred at stir zone (SZ), where the bonded section was minimum. The tensile shear load and tensile deformation of the FSSW joints increased linearly with increasing the bonded size. The finer grain size in the SZ led to the higher hardness, which resulted in higher fracture strength. When the tensile shear load of the joints increased approximately 3-fold, the failure energy absorption of the joints increased approximately 15-fold. 相似文献
19.
目的研究不同转速的焊缝性能变化对组织的影响,以期为高转速搅拌摩擦焊工艺参数的优化和更大范围的应用提供指导。方法在3000~8000 r/min的高转速范围内对3A21-O态铝合金进行搅拌摩擦焊试验,焊后分析了焊缝成形特征和晶粒形态并测试了接头截面显微硬度。结果当转速由1000~4000 r/min区间升高至5000~8000 r/min区间时,焊核宽度急剧增大了近50%。这是由于焊具产热机制以滑移摩擦为主向以粘着摩擦为主转变,导致上述焊核宽度增大的行为。随着转速的增大,焊缝温度呈现出常规搅拌摩擦焊工艺中鲜见的先增大而后趋于稳定的变化趋势;温度随转速的这一演变特征导致焊缝焊核区的亚结构数量比例以及显微硬度都随转速呈现出与此相近的演变规律。结论在高转速搅拌摩擦焊中,转速提高能提高焊缝性能,且增强的焊缝性能能够在较宽的高转速区间内保持相对稳定的状态。 相似文献
20.
Hongwu ZHANG Zhao ZHANG 《材料科学技术学报》2007,23(1):73-80
Rate-dependent constitutive model was used to simulate the friction stir welding process. The effect of the viscosity coefficient and the process parameters on the material behaviors and the stress distributions around the pin were studied. Results indicate that the stress in front of the pin is larger than that behind the pin. The difference between the radial/circumferential stress in front of the pin and that behind it becomes smaller when the material gets closer to the top surface. This difference increases with increasing the viscosity coefficient and becomes smaller when the welding speed decreases. The variation of the angular velocity does not significantly affect the difference. 相似文献